Radiative Transfer

Lecture 02

The Physics of Star Formation

Les Houches School of Physics February 21, 2024

Lecturer: Dr. Stefan Reissl

Optical properties of dust

Lifecycle of dust

⇒ Dust is omnipresent and comes in different shapes sizes and compositions

Dust sizes and shapes

Polycyclic aromatic hydrocarbons (PAH)

Dust ingredients

Chiar & Tielens 2006

~100 % Si, Mg, Ca, Al, Fe, and Ni is in grains

- Almost all Si and Mg is in silicates
- 30 % of Fe is in silicates (rest is missing)
- 20 % of O is in silicates and oxides

Possible candidates

- Forsterite (Mg₂SiO₄) (astrosilicate)
- Fayalite (Fe_2SiO_4)
- Enstatite (Mg SiO₃)
- Ferrosilite (Fe SiO₃)

~40 % of C is in grains

- ~15 % is in PAHs
- 5 10 % is in hydroyarbons
- 20 % is unknown

Dust material

"Classic" Dust: Silicates and graphite are separate components Silicates + Graphite + PAH

"Astrodust" model:

Amorphous silicates + carbon material + other ($Fe_XO_Y + Al_2O_2 + CaCo_3 + ...$)

Optical properties are quantified by the complex refractive index:

$$m = n + ik$$

- Real part n (refraction)
- Imaginary part k (attenuation)

Material constants

https://www2.mpia-hd.mpg.de/HJPDOC/

Home	Reference & DataBase of Optical Constants
	Common of model and
Content	Groups of materials:
Structure	
Jata submission	• silicates: pyroxenes, olivines, others
Who created HJPDOC	• slicon and slicon oxides: SI, SIO, SIO ₂
what is new?	metals: Fe, AI, Mg and others
	 oxides: Fe0, Fe2O3, Fe3O4, MgO, TiO2, Al2O3, spinel
	sulfides: FeS, MgS, SiS ₂
Silicates	 nitrids: SiN, MaN, CaN₂
Silicon, quartz	- carbidas: SiC Fac TiC
Metals	- carbonaceous cite, rice, rice diamonde granhite coale/kerogens OCC HAC amorphous carbon others
Oxides	- carbonice: CH,
Sulfides	ing and a condition of the second s
Nitrids	• Ices: H ₂ O, CO ₂ , NH ₃ , others, mixtures
Carbides	 extra-terrestiral materials: those from Moon, planets, meteorites, etc. (incl. artificial ones)
Carbon species	 miscellaneous: FeSi, FeSi2, carbonates, carbonils, etc.
Organics	
ices, mixtures	For collected references to papers and data files, please, follow the links to the groups of materials given above! More data and information may be foun
Extraterrest.	in other databases, published collections of optical constants and books and reviews on the subject insed below. Of some interest may be the tools of the Kramers, Kranis asolitish the Effective Madium Theory, and light scattering codes available in Internet.
Misc.	Mattera Noring analysis, the Electric modulin moory and ngin scattering codes available in internet.
	To cite the database one should use the reference:
	Th. Henning, V.B. Il'in, N.A. Krivova, B. Michel, and N.V. Voshchinnikov (1999)
Other databases	WWW database of optical constants for astronomy.
Bibliography	Astron. Astrophys. Suppl. 136, 405.
Tools and codes	The current state of the database and our future plans are described (with some illustrations) in:
Other properties	C. Jager, V.B. Il'in, Th. Henning, H. Mutschke, D. Fabian, D.A. Semenov, and N.V. Voshchinnikov. A database of optical constants of cosmic dust
Links	analogs.
	J. Quant. Spectrosc. Rad. Transf. 79-80 (2003), p. 765-774
MPIA Heidelberg StPetersburg group	
uena group	

https://www.astro.uni-jena.de/Laboratory/OCDB/

Interstellar Dust

- infrared emission from the silicate-graphite-PAH model for interstellar dust (Draine & Li 2007)
- extinction curves for selected mixtures of carbonaceous and silicate grains (from submm. to X-ray wavelengths)
- scattering phase functions for selected mixtures of carbonaceous and silicate grains (IR to X-ray energies)
- optical properties for candidate grain materials (from submm. to X-ray wavelengths):
 - dielectric functions
 - absorption and scattering cross sections for spheres
 - Planck-averaged absorption and radiation pressure cross sections for spheres
- <u>microwave emission</u> from interstellar grains

https://www.astro.princeton.edu/~draine/

Optical properties of dust

geometric cross section $\sigma = \pi a_{eff}^2 [cm^2]$

cross section $C = \sigma Q [cm^2]$

opacity

$$\kappa = \frac{\sigma Q}{m} [cm^2 kg^{-1}]$$

Dimensionless parameter Q quantifies:

- grain shape
- material composition
- wavelength
- grain orientation
- polarization
- temperature

RT with dust grains

Dust scattering

Reflection and transmission e.g. on a water surface

Scattering on a dust grain

Scattering phase function

Scattering source term: $j_{sca} = \kappa_{sca} \int_{4\pi} I \Psi(\theta, \phi) d\Omega$

Wavelengths regime

Rayleigh regime

scattering:
$$Q_{sca} \approx \frac{8}{3} x^4 \left| \frac{m^2 - 1}{m^2 + 1} \right|^2$$

Absorption: $Q_{abs} \approx 4x \operatorname{Im}\left(\frac{m^2-1}{m^2+1}\right)$

Phase function: $\Psi(\theta) \approx \frac{3}{4} (1 + \cos \theta^2)$

NGC 7023 Iris Nebula

Mie Theory

The Mie theory is a complete mathematical–physical theory of the scattering of electromagnetic wave by homogeneous spherical particles

Solution for each direction Θ can be calculated as a sum of Ricati – Bessel functions $\psi_k(x)$ and $\xi_k(x)$ and the recursive angular functions

$$\pi_k(\theta) = \frac{2k-1}{2k+1} \pi_{k-1}(\theta) \cos \theta - \frac{k}{k-1} \pi_{k-2}(\theta)$$

with $\pi_0(\theta) = 0, \pi_1(\theta) = 1$
and

 $\tau_k(\theta) = k \cos \theta \pi_k(\theta) - (k+1) \pi_{k-1}(\theta)$

Amplitude function

Defines amplitude functions

$$S_1(\theta) = \sum_{k=1}^{\infty} \frac{2k+1}{k(k+1)} \left(a_k \pi_k(\theta) + b_k \tau_k(\theta) \right)$$

and

$$S_2(\Theta) = \sum_{k=1}^{\infty} \frac{2k+1}{k(k+1)} \left(a_k \tau_k(\Theta) + b_k \pi_k(\Theta) \right)$$

where coefficients a_k and b_k are a combination of $\psi_k(x)$ and $\xi_k(x)$ and the refractive index m = n + ik as well as the derivatives $\psi'_k(x)$ and $\xi'_k(x)$

$$a_{k} = \frac{\psi'_{k}(mx)\psi_{k}(x) - m\psi_{k}(mx)\psi'_{k}(x)}{\psi'_{k}(mx)\psi_{k}(x) - m\psi_{k}(mx)\xi'_{k}(x)} \qquad b_{k} = \frac{m\psi'_{k}(mx)\psi_{k}(x) - \psi_{k}(mx)\psi'_{k}(x)}{m\psi'_{k}(mx)\xi_{k}(x) - \psi_{k}(mx)\xi'_{k}(x)'}$$

Scattering matrix

Scattering of the Stokes vector $\vec{S'} = \hat{M} \vec{S}$

Scattering matrix
$$\widehat{M} = \begin{pmatrix} m_{11} & m_{12} & 0 & 0 \\ m_{12} & m_{11} & 0 & 0 \\ 0 & 0 & m_{33} & m_{34} \\ 0 & 0 & -m_{34} & m_{33} \end{pmatrix}$$

(only 4 independent components for spherical grains)

Note: For irregular grains the matrix may be full and components need to be calculated by other means than Mie Theory!

Components:

• $m_{11} = \frac{1}{2} (|S_1(\theta)|^2 + |S_2(\theta)|^2)$

•
$$m_{12} = \frac{1}{2} (|S_1(\theta)|^2 - |S_2(\theta)|^2)$$

•
$$m_{33} = \frac{1}{2}(S_1(\theta)S_2(\theta)^* + S_1(\theta)S_2(\theta)^*)$$

•
$$m_{34} = \frac{1}{2}(S_1(\theta)S_2(\theta)^* - S_1(\theta)S_2(\theta)^*)$$

Scattering phase function

Note: The component m_{11} is the exact phase function and

$$g = \langle \cos \theta \rangle = \frac{\int m_{11} \cos \theta \, \mathrm{d} \, \Omega}{\int m_{11} \, \mathrm{d} \, \Omega}$$

is the Henye – Greenstein parameter for the approximation

$$\beta(\theta) = \frac{1}{4\pi} \frac{1 - g^2}{(1 - g^2 - 2g\cos\theta)^{3/2}}$$

Efficiencies

• Extinction:
$$Q_{ext} = \frac{1}{x^2} \sum_{k=1}^{\infty} (2k+1) \operatorname{Re}(a_k + b_k)$$

• Scattring:
$$Q_{sca} = \frac{1}{x^2} \sum_{k=1}^{\infty} (2k+1) \operatorname{Re} \left(|a_k|^2 + |b_k|^2 \right)$$

• Absorption:
$$Q_{abs} = Q_{ext} - Q_{sca}$$

• Pressure:
$$Q_{pr} = Q_{ext} - gQ_{sca}$$

Note: These calculations are only valid for spherical grains!

(Scattering) codes

MIEX (Spherical grains, Mie Theory) https://ui.adsabs.harvard.edu/abs/2018ascl.soft10019W/abstract

MSTM (dust aggregates, T-Matrix method) https://pypi.org/project/mstm-studio/

SCADYN (arbitrary shapes, T-Matrix method) \rightarrow Radiative torque Q_{RAT} <u>https://github.com/jherrane/scadyn</u>

DDSCAT (arbitrary shapes, discrete dipole approximation) \rightarrow Circular polarization Q_{circ} & Radiative torque Q_{RAT} <u>https://www.astro.princeton.edu/~draine/DDSCAT.7.3.html</u>

RT with a dust mixture

- Grain size: a_{eff}
- Grain size distribution: $\frac{dn}{da_{eff}}$
- Weight per size bin da_{eff} : $W_k = \frac{a_k \frac{dn}{da_{eff}}}{\int_{a_{min}}^{a_{max}} \frac{dn}{da_{eff}} da}$
- Material ratio: ζ_i with $\sum_i \zeta_i = 1$

Typical MRN (Mathis, J.S., Rumpel, W., and Nordsiek, K. H. 1977) dust model for the interstellar medium :

- Grain size distribution: $\frac{dn}{da_{\rm eff}} \propto a_{\rm eff}^{-3.5}$
- Size range: $a_{\min} = 5 nm$, $a_{\max} = 250 nm$
- Materials
 - Silicate: $\zeta_i = 0.375$
 - Graphite: $\zeta_i = 0.625$

e.g. average cross section of absorption becomes

$$\bar{C}_{\rm abs} = \sum_{i} \zeta_{i} \sum_{k} W_{k} \pi a_{k}^{2} Q_{\rm abs, i, k}$$

Scattering probability

• average cross section:
$$\overline{C} = \sum_i \zeta_i \sum_k W_k \pi a_k^2 Q_{i,k}$$

• albedo:
$$\alpha = \frac{C_{sca}}{C_{abs} + C_{sca}}$$

 \Rightarrow Scattering becomes dominant for a mixture with more larger grains

Observed dust scattering

Grains with similar size as wavelength are present

Dust heating

Dust heating

Dust heating

Thermal balance for optically thick case:

$$\int C_{\rm abs} (F_{\lambda} e^{-\tau_{\lambda}} + J_{\lambda}) d\lambda = 4\pi \int C_{\rm abs} B_{\lambda}(T_{\rm dust}) d\lambda$$

BUT: Radiation field $F_{\lambda}e^{-\tau_{\lambda}} + J_{\lambda}$ is not known at the beginning \Rightarrow Monte Carlo techniques

MC dust heating

- Start with an initial dust temperature T_0
- Inject $N_{\rm ph}$ photons (photon packages) from each source into the grid
- Sample a new direction \hat{n} (s. points on a sphere) and a new wavelength λ for each absorption event
- Temperature correction techniques:
 - Correct only in cells with an absorption event (memory efficient, some cells may not have T_{dust} in the end)
 - Store the entire radiation field (continuous absorption) in each cell and correct for each absorption and once at the end of the run (memory demanding).
 - Split photon into an absorbed and a scattered photon (time demanding)

Iterative approach

- Start with an initial dust temperature T_0
- Correct temperature $T_{new} \rightarrow T_{old} + \Delta T$
- Sample new wavelength from Planck function

•
$$z_i = \frac{\int_{\lambda_i}^{\lambda_i + \Delta \lambda} C_{abs} B_{\lambda}(T_{new}) d\lambda}{\int_0^{\infty} C_{abs} B_{\lambda} d\lambda}$$

- Repeat MC run until convergence criterion is fulfilled e.g. $T_{new} T_{old} < \varepsilon$ in each cell
- Full control of convergence
- Very time consuming!

Spontaneous emission

- Start with an initial dust temperature T_0
- Correct temperature $T_{new} \rightarrow T_{old} + \Delta T$
- Sample new wavelength from partial temperature derivative of Planck function $B'_{\lambda}(T) = \frac{\partial B_{\lambda}(T)}{\partial T}$

$$z_{i} = \frac{\int_{\lambda_{i}}^{\lambda_{i} + \Delta \lambda} C_{abs} B_{\lambda}'(T_{new}) d\lambda}{\int_{0}^{\infty} C_{abs} B_{\lambda}'(T_{new}) d\lambda}$$

- Only one MC run is required
- No convergence control of temperature
- The spectrum of the radiation field J_{λ} is always correct.

Bjorkman & Wood 2001

What regulates star formation?

10-3

 10^{-1}

10⁰

^{10¹} λ_{in} [μm]

Radiative feedback radiation — pressure dust gas collision $F_{\rm rad}(r) = \frac{f_{abs}(1+\tau_{IR})}{4\pi c r^2} \int C_{pr} L_{\lambda} d\lambda$ 10³ 10² γ_{out} [μm] 10^{-1} 10⁻² MC dust simulation

Reissl: Radiative Transfer Feb. 21, 2024

10³

10²

0.1

0.01 [%]

0.001

0.0001

What regulates star formation?

Stochastic heating

In contrast to "large" grains PAHs with N_a atoms have internally "limited" degree freedom to absorb energy:

- Rotational: 3
- vibrational: $3N_a 6$

$$\Rightarrow$$
 Smaller heat capacity: $C = \frac{\partial U}{\partial T}$

Stochastic heating

"small" grains:

- spend a significant amount of time at much higher temperatures
- emit at shorter wavelengths, which can have a strong effect on the observed spectrum

Stochastic heating algorithm

- RT for each grain size k separately
- define temperature range $T_{dust} \in [T_{\min}, T_{\max}]$ in N bins
- enthalpy $H_k(a,T) = \frac{4}{3}\pi a^3 \rho \int_0^T C(T') dT'$ (pre-calculated)

Probability for heating from initial state i to final state f (f > i)

$$A_{ij} = 4\pi\lambda_{ij} C_{abs}(\lambda_{ij}) J(\lambda_{ij}) [H_k(T_{max}) - H_k(T_{min})] \text{ with } \lambda_{ij} = \frac{hc}{H_k(T_f) - H_k(T_i)}$$

Assume cooling occurs only to the next lower level

$$A_{i,i-1} = \frac{4\pi}{H_k(T_i) - H_k(T_{i-1})} \int_0^\infty C_{abs} B'_\lambda(T_i) \ d\lambda$$

Diagonal elements $A_{i,i} = -\sum_{f \neq i} A_{f,i}$
Otherwise $A_{i,j} = 0$

 \Rightarrow Matrix A_{ij} is determined by the material specific quantities C(T) and C_{abs} as well as the radiation field J_{λ}

Stochastic heating probability

Probability $P_k(T_i)dT$ of finding the k-th grain size at temperature T_i

$$\sum_{i=1}^{N-1} P_k(T_i) A_{f,i} = 0$$

(steady state condition)

with
$$f = 0, ..., N - 1$$
 and

$$\sum_{i=1}^{N-1} P_k(T_i) = 0$$
(normalizing condition)

PAH emission

Finally, the emissivity over all grains of the same size is $j_{\lambda} = \sum_{k} C_{\text{abs},k} \int P_{k} B_{\lambda}(T) dT$

The origin of disk shadows

Ginsk+ 2021 SU Aur 10^{-2} 10^{-1} 10^{0} 1.6 μm <u>1"</u> Q_{ϕ} $150\,\mathrm{kyr}$ Ideal map 1.6 μm <u>1</u>" 1.6 μm _____

Normalized column density 10^{-4} 10^{-3}

Küffmeier+ 2021

Krieger+ 2024

Disk shadows in emission

