

STITUTO DI ASTROFISICA E PLANETOLOGIA SPAZIALI

A Unifying and biased observational overview from the Galactic Disk to Protoplanetary Disks

Sergio Molinari

INAF - Istituto Nazionale di Astrofisica IAPS – Istituto di Astrofisica e Planetologia Spaziale Roma

ECOGAL School, The Physics of Star Formation Ecole de Physique des Houches, 12-23 February 2024

From diffuse gas to Stars and Planets

Realistic illustration of Milky Way (NASA/JPL-Caltech)

Wouldn't this be ideal?

Mapping the Milky Way in any possible way

Table 1: List of most representative surveys covering the Galactic Plane

Surveys facilities	λ or lines	Surveys notes
Ground-based		
Columbia/CfA	CO, ¹³ CO	9 - 25' resolution (Dame et al., 2001)
DRAO/ATCA/VLA	HI-21 cm OH/H α -RRL/1-	IGPS: unbiased HI-21cm $255^{\circ} \le l \le 357^{\circ}$ and $18^{\circ} \le l \le$
	2GHz cont. 5GHz cont.	147° (McClure-Griffiths et al., 2001; Gibson et al., 2000; Stil
		et al., 2006) + THOR: unbiased HI-21cm/OH/H α -RRLs/1-
		2GHz cont. $15^{\circ} \le l \le 67^{\circ}$ (Beuther et al. in prep.)+ COR-
FCRAO 14 m	CO, ¹³ CO	NISH: 5GHz continuum $10^{\circ} \le l \le 65^{\circ}$ (<i>Hoare et al.</i> , 2012) 55" resolution. Galactic Ring Survey (<i>Jackson et al.</i> , 2006)
Mopra 22 m	CO, 13 CO, N_2H^+ , (NH ₃ +	+ Outer Galaxy Survey (<i>Heyer et al.</i> , 1998) HOPS: (<i>Walsh et al.</i> , 2011; <i>Purcell et al.</i> , 2012), MALT90: ~
-	H_2O) maser, $HCO^+/H^{13}CO^+$ +	2000 clumps $20^{\circ} \ge l \ge -60^{\circ}$ (Foster et al., 2013), Southern
	others	GPS CO: unbiased $305^{\circ} \le l \le 345^{\circ}$ (Burton et al., 2013),
		ThrUMMS: unbiased $300^{\circ} \le l \le 358^{\circ}$ (Barnes et al., 2013),
		CMZ: (Jones et al., 2012, 2013)
Parkes	CH ₃ OH maser	Methanol MultiBeam Survey (Green et al., 2009)
NANTEN/ NAN-	CO, ¹³ CO, C ¹⁸ O	NGPS: unbiased, $200^{\circ} \le l \le 60^{\circ}$ (Mizuno and Fukui, 2004)
TEN2		+ NASCO: unbiased in progress, $160^{\circ} \le l \le 80^{\circ}$
CSO 10 m	1.3 mm continuum	Bolocam Galactic Plane Survey (BGPS), 33" (Aguirre et al.,
	870	2011)
APEX 12 m	$870 \ \mu m \ continuum$	ATLASGAL, $60^{\circ} \ge l \ge -80^{\circ}$ (Schuller et al., 2009)
Space-borne		
IRAS	12, 25, 60 and 100 μ m cont.	3-5', 96% of the sky
MSX	8.3, 12.1, 14.7, 21.3 μ m cont.	Full Galactic Plane (Price et al., 2001)
WISE	3.4, 4.6, 11, 22 μ m continuum	All-sky (Wright et al., 2010)
Akari	65, 90, 140, 160 μ m continuum	All-sky (Ishihara et al., 2010)
Spitzer	3.6, 4.5, 6, 8, 24 μ m continuum	GLIMPSE+GLIMPSE360: Full Galactic Plane (Benjamin
		et al., 2003), (Benjamin and GLIMPSE360 Team, 2013) +
	250 550 050 1000 0000	MIPSGAL, $63^{\circ} \ge l \ge -62^{\circ}$ (<i>Carey et al.</i> , 2009)
Planck	350, 550, 850, 1382, 2098,	All-sky, resolution $\geq 5'$ (<i>Planck Collaboration et al.</i> , 2013a)
TT	3000, 4285, 6820, $10^{+} \mu m$ cont.	III CAL En ll Coloctio Diene (Malimenti et al. 2010a)
Herschel	70, 100, 230, 330, 300 μ m cont.	ni-GAL: Full Galactic Plane (Molinari et al., 2010a)

Molinari+ 2014, PP VI

Multiphase ISM in the Milky Way

Atomic material is found spread over the Galaxy disk

- Cold Neutral Medium (CNM) \rightarrow T ~ 100 K
- Warm Neutral Medium (WNM) → T ~ 8000 K

- Molecular material is mostly concentrated within a few degrees of the Galactic Plane
- Similarly different trends in Galactocentric radial profiles

Star Formation: the classical conundrum

¹³CO FCRAO Galactic Ring Survey (Jackson+ 2006)

Support in Molecular clouds

¹³CO FCRAO Galactic Ring Survey (Jackson+ 2006)

Turbulence Support

Molecular Clouds are not globally collapsing

Turbulent support

- CO linewidth in molecular clouds are largely non-thermal: $\Delta v \approx 10 \text{ km s}^{-1}$ (thermal linewidth for T=10K $\rightarrow 0.1 \text{ km s}^{-1}$)
- What is injecting turbulence at the cloud scale?
 - Slow gravitational contraction
 - Large-scale flows
 - SN shocks

•••

Magnetic Support: Clouds to Filaments

In molecular clouds, a very small fraction ($\sim 10^{-7}$) of the cloud is ionised due to Cosmic Rays.

In flux-freezing conditions, ions are bound to B lines and the ion-neutral drag acts to allow gas flow along B lines and oppose flow across B lines.

Natural formation of flattened structures

Role of Magnetic Field ?

B-vs-filament alignment in 9 star forming regions (based on Planck satellite polarization maps)

Role of Magnetic Field ?

- Thresholds for twofold B- ρ directional transitions: A_V~3 to A_V~20
- Evidence of B entrained from accretion flows
- Role of B
 - Facilitator ?
 - Regulator ?
 - Passive ?
- vs different mass regimes ?
- vs different evolutionary stages ?
- vs ambient shear (e.g., R_{GAL})

Larger mapping areas + Many more clouds/filaments

Magnetic Field vs Gravity

Molinari et al. 2016

70-160-250µm composite

the Herschel infrared Galactic Plane Survey

from cold starless clumps to hot HII Regions

Filamentary Clouds

Molinari+ 2010, Schisano+ 2014, 2020

- The denser part of the molecular clouds in Galactic Plane is the in networks of filling structures
 - the n teh rganised ientary
- The dense clumps that are sites of protocluster formation are for a large fraction distributed along these filaments
- The counterpart of this phenomenology in nearby (local) star forming regions exists; in this case the compact sources found on filaments are «cores», or sites of formation of single stars

Filamentary Clouds

- The denser part on he molecular clouds on teh Galactic Plane is organised in networks of filamentary structures
- The dense clumps that are sites of protocluster formation are for a large fraction distributed along these filaments
- The counterpart of this phenomenology in nearby (local) star forming regions exists; in this case the compact sources found on filaments are «cores», or sites of formation of single stars

Molinari+ 2010, Schisano+ 2014, 2020

Filamentary Clouds

Molinari+ 2010, Schisano+ 2014, 2020

- The denser part of the molecular clouds on teh Galactic Plane is organised in networks of filamentary structures
- The dense clumps that are sites of protocluster formation are for a large fraction distributed along these filaments
- The counterpart of this phenomenology in nearby (local) star forming regions exists; in this case the compact sources found on filaments are «cores», or sites of formation of single stars

Galactic latitude

André+ 2010. 2014

Filaments and Star Formation

Star formation is mostly associated with filaments

(reported for young stars back to Schneider & Elmegreen 1979)

But also primordial condensation ($\tau^{pre} \le 1$ Myr) are located on filaments On situ formation $\ge 75\%$ early objects Not all filaments are star forming

Mass-Size relationship of filamentary dust clouds

Mass-Size relationship of filamentary dust clouds

Supersonic non-thermal velocity dispersions $\sigma \sim 1 \ km/s$ are compatible with measurements on large Galactic filaments, providing dynamical support.

Magnetic support in filaments

Kinematics in filamentary clouds

Filamentary InfraRed Dark Cloud (IRDC) SDC335

CH₃OH and N₂H⁺ with ALMA (3mm band) reveal ordered motions along the filaments: filament accretion onto the central massive cores

Single-dish millimeter spectroscopy (HCO⁺ 1-0) suggests global collapse: clump accretion onto the filaments.

When gravity takes over: the Dense Clumps

CLUMPS \rightarrow Compact dense structures, generally poorly resolved by single-disk facilities both in dust and gas. Clumps are sites of protocluster formation

Typical parameters:

• $0.1pc \leq R \leq 1.5pc \rightarrow$ These are protoclusters formation sites

IRAM 30m - 1-3mm

- $100M_{\odot} \leq M \leq 5000M_{\odot}$
- $n \ge 10^4 \, cm^{-3}$
- Temperature, Luminosity and the shape of the Spectral Energy Distribution (SED) dramatically change with evolution

Dense Clumps in the infrared

Tracing the evolution of Dense Clumps

Back to the Galaxy: Star Formation Rates

Milky Way K-S relationship

Star-forming Clumps as Chemistry Labs

Rich photochemistry triggered by intense UV field from newborn massive stars

Evolution

Sublimation of dust grain ice mantles (rich in molecules)

Dynamical State of Massive Clumps

Hi-GAL/MALT90 massive clumps

The excess of velocity dispersion at any given Clump radius (w.r.t. expectations for turbulent support) may be due to gravity-driven turbulence that does not oppose collapse, because it dissipates faster than it is injected Massive Clumps depart from the Larson's relation $\sigma_v \propto R^{0.5}$ typical of turbulent support $\int_{y_{100}}^{y_{100}} \int_{y_{100}}^{y_{100}} \int_{y_{100}}^$

Virial parameters are for the most part α <1, suggesting a state of unsupported collapse *Caution in interpreting* α_{vir} : *equipartition may not mean stable equilibrium*

(image: Ks – contours: cold dust)

Strong ZAMS source and YSO cluster coincident with the peak of dense gas \rightarrow well evolved system

(image: Ks – contours: cold dust)

Strong ZAMS source and YSO cluster coincident with the peak of dense gas \rightarrow well evolved system

Rich YSO cluster coincident with the peak of dense gas ightarrow massive ZAMS likely not yet there

(image: Ks – contours: cold dust)

Rich YSO cluster AROUND the peak of dense gas \rightarrow seed of massive stars not yet there, but still part of the same Star Formation event

Strong ZAMS source and YSO cluster coincident with the peak of dense gas \rightarrow well evolved system

Rich YSO cluster coincident with the peak of dense gas ightarrow massive ZAMS likely not yet there

(image: Ks – contours: cold dust)

Rich YSO cluster AROUND the peak of dense gas \rightarrow seed of massive stars not yet there, but still part of the same Star Formation event

> Rich YSO cluster OFFSET with the peak of dense gas \rightarrow two distinct star formation events in the same region

Rich YSO cluster coincident with the peak of dense gas \rightarrow massive ZAMS likely not yet there

Resolve the dense clumps into cores, a.k.a., the YSO progenitors

Cores-clusters overview with ALMA/NOEMA

- Variable but relatively high degree of fragmentation (up to 40-ish) in all evolutionary stages
- Hierarchical sub-clustering, with fragments separation ~ thermal Jeans length
- Hints of cores separation decreasing with evolution

However: 10-20 massive clumps for each program - Physical resolutions between 1000 and 5000 au

→ poor statistics

- Mapping of entire star-formation complexes
- Statistical target samples (~1000s)
- Chemistry

Large ALMA Programs: ALMA-IMF & ALMAGAL

ALMA-IMF: Star-Forming Complexes

Large ALMA Program: ALMA-IMF: Investigating the origin of stellar masses (Motte+2022)

- 15 extreme protoclusters (2500 \leq M \leq 33000 M_{\odot}) mapped at 1mm and 3mm, including e.g. the W43 mini-starbust complex
- Sensitivity down to ~0.5 M_{\odot} and spatial resolution of ~2000 AU

FIRST RESULTS

- ~700 cores with masses $0.15 \le M \le 250 M_{\odot}$ (Motte+22; Ginsburg+22)
- Evidence of top-heavy core mass function in W43-MM2/MM3 (Pouteau+22)
- Similar chemical composition and excitation of most of the COMs in W43-MM1 hot cores (Brouillet+22)

ALMAGAL: Statistical Galaxy-Wide Surveys

Large ALMA Program ALMAGAL: a **<u>statistically significant and complete survey</u>** of massive star-forming clumps in our Galaxy (Molinari+ 2024, in prep.)

1017 clumps: $M \ge 500 \text{ M}_{\odot,} 10^{-2} \le \text{L/M} \le 10^3 \text{ L}_{\odot}/\text{M}_{\odot}$ ALMA Band 6 (1.3mm), 1000au spatial resolution, 0.3 M $_{\odot}$ mass limit

ALMAGAL: Fragmentation Statistics

From Cores to Disks

Simulations show that new/different physics affects the process of clump fragmentation and disk formation. Simulations alone cannot allow us to derive quantitative conclusions without the ground truth provided by observations. A meaning full detailed comparison is essential!

(Lebreuilly et al. 2022, 2023)

<= Individual disks, fed by streamers

ALMA and VLT observations of disks populations

The past decade has produced a revolution in our understanding of protoplanetary disk populations using ALMA and VLT.

Disk masses, sizes and accretion rates have been the prime observables used to constrain disk physics during planet formation

«Protoplanetary» vs. «Planet hosting» disks

"protoplanetary" disks @1Myr seem to contain too little mass to form planetary systems.

Planet formation has to happen at early stages of evolution implying that constraining initial conditions is essential

Are young disk masses and sizes reliable?

Measuring disk radii and masses at young ages is not easy Detailed comparison with simulations show systematic bias with measurements done at 1mm with ALMA

Basic comparison framework Simulations 🗇 Observations

Are young disk masses and sizes reliable?

Measuring disk radii and masses at young ages is not easy

Detailed comparison with simulations show systematic bias with measurements done at 1mm with ALMA

Trace the material that is feeding the young disk (gas and dust properties)

Trace the physical conditions in the disk

Effect of environment on disk properties and lifetimes

Most of what we know of disk evolution is based on nearby SFR

This is an anomaly in the galactic context, and for the Solar System, which may have formed in a clustered environment

Effect of external photoevaporation on disk mass and (Itrich+2024ab, Kang+2023,2024)

Effect of environment on disk properties and lifetimes

Most of what we know of disk evolution is based on nearby SFR

This is an anomaly in the galactic context, and for the Solar System, which may have formed in a clustered environment

The ECOGAL challenge: Putting everything together

The ECOGAL challenge: Putting everything together

The «real» ECOGAL challenge

"we switched-off gravity" ?? WHAT???

"clumps" ? "filaments" ? "cores" ? How much crap do you think you see ?

The Sins you will do "the p-Whatthefuckov to-

"we only need turbulence!"

"the data do not fit the model"

New correlation at the 99.5% level "I do not know what relates those parameters, but I used machine-learning"

"these ISM structures have a universal size!"

INFERNO DI DANTE

"Lucifer eating Cosmologists" Giovanni da Modena, Basilica di S. Petronio Welcome to Les Houches

Let's learn a lot of things!

Question everything!

Lecturers are at your disposal: use them!

ENJOY THE PHYSICS OF STAR FORMATION SCHOOL!!

Welcome to Les Houches

ENJOY THE PHYSICS OF STAR FORMATION SCHOOL!!