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Collisional excitation and 
de-excitation



• In the previous lecture, we examined how atoms and 
molecules interact with the radiation field


• In this lecture, we will examine how they interact with 
each other (and with charged particles such as electrons) 
via collisions


• Collisions between particles can change the quantum 
state of one or both colliders (or leave them unchanged)


• Collisions can be treated fully quantum-mechanically 
using scattering theory. However, in this lecture we take a 
simpler approach



• We start by defining the collisional rate Cijc


• This is the rate (per atom/molecule in state i) that 
collisions with some collider c cause a transition to state j


• Transition rate per unit volume = Cijc ni


• To get the total collision rate Cij, we simply sum over the 
rates for all possible collision partners:



• Cijc depends on nc, the number density of collider c


• Useful to define a collisional rate coefficient qijc that 
doesn’t have this dependence:


• This in turn can be written as an integral of a velocity-
dependent collision cross-section over a velocity 
distribution:



• The velocity distribution here is the distribution of relative 
velocities (at large distance) between the particle of 
interest and the collider c


• In the ISM, this is usually simply a Maxwell-Boltzmann 
distribution characterised by kinetic temperature T


• We will discuss approximate models for collisional cross-
sections this afternoon. For now, we assume that this is 
known (either from experiment or theory)



• Given collisional coefficient for transition from i → j, the 
corresponding coefficient for the inverse reaction is:


• This result follows from the principle of detailed balance 

• In thermal equilibrium, transitions from i → j occur at 
same rate as transitions from j → i


• Therefore, in thermal equilibrium:



• Rearranging this yields:


• In thermal equilibrium, the ratio of nj and ni is given by a 
Boltzmann distribution:


• Substituting this into our expression for qij yields the 
desired relationship between qij and qji:



• Our derivation assumed thermal equilibrium


• However, we know that qij, qji just depend on the 
appropriate collision cross-section plus the velocity 
distribution


• Provided we have a Maxwell-Boltzmann velocity 
distribution, values of qij, qji don’t depend on assumption 
of equilibrium


• Therefore, this relationship between collisional excitation, 
de-excitation holds in general, not only in equilibrium



The two-level atom

• We will explore interaction between collisional excitation, 
de-excitation and radiative effects using the simplest 
possible toy model: the two-level atom


• Lower level l, upper level u, energy separation Eul


• Start by assuming that any radiation field is negligible, so 
that we can ignore effects of absorption, stimulated 
emission


• NB. Necessary (but not sufficient) condition: gas must be 
optically thin — otherwise Iν ~ Sν locally



• Three effects that can change level populations: 
collisional excitation (Clu), collisional de-excitation (Cul), 
radiative de-excitation (Aul)


• Level populations then evolve as:


• In astrophysical context, characteristic timescale of these 
equations generally very short compared to other 
timescales of interest 



• Therefore, usually OK to assume statistical equilibrium: 
individual atoms change level, but level populations 
remains constant


• In this case:


from which it follows that:


or alternatively:



• From detailed balance, we know that:


and so therefore:



• Key number here is the ratio of radiative de-excitation, 
collisional de-excitation rates, Aul / Cul


• If collisions dominate, Aul / Cul << 1 and we simply recover 
a Boltzmann distribution


• Conclusion: when collisions dominate, the level 
populations are in LTE


• If radiative de-excitations dominate, Aul / Cul >> 1 and 
hence nu/nl is much smaller than its LTE value



• In this regime — the low density regime — we have:


which we can also write as


(i.e. every collisional excitation is followed by a radiative 
de-excitation) 



• Transition between two regimes occurs when Aul / Cul = 1


• Suppose Cul dominated by collisions with one particular 
type of particle (e.g. electrons, H atoms, etc.)


• Then, at fixed temperature, Cul varies linearly with density


• Can therefore identify one particular density for which we 
have Aul / Cul = 1 — the critical density for the transition


• In terms of the collisional rate coefficient, this is:



• If qul varies with temperature, then so will critical density. 
However, this dependence is often fairly weak


• Different colliders have different qul and hence different 
critical densities. If more than one collision partner is 
important, overall critical density for transition will be:


xc is the fractional abundance of collider c



• Example: the [CII] 158 micron fine structure transition. 
This has a radiative transition rate:


• In an ionized gas cloud (e.g. in the WIM), electron 
collisions dominate. For T > 2000 K, we have:


• We therefore have a critical density:



• In a neutral atomic gas cloud with xe ~ 10-4 (e.g. a CNM 
cloud), collisions with H atoms dominate:


• In this case, the critical density is:



• Conclusions:


- [CII] in low density limit in DIG (ne < 1 cm-3)


- [CII] in low n limit in CNM (nH < 100 cm-3) and WNM


- [CII] in LTE in some HII regions but not all — typical HII 
region densities span wide range of values



• Variations in critical density primarily driven by differences in 
the value of Aul


• This can vary by many orders of magnitude depending on 
transition energy, size of dipole moment, whether transition is 
permitted or forbidden, etc.


• Collisional de-excitation rates rarely vary by more than order 
of magnitude for given class of collisions (e.g. electrons with 
positive ions)


• For permitted optical/UV lines, critical densities are very large 
compared to ISM densities — low n limit applies


• For forbidden IR lines, critical densities much smaller, can find 
both low n, LTE behaviour 



• Suppose now that the total number density of the atoms 
described by our two-level model is nX


• From nl + nu = nX plus our expression for nu/nl, we can 
derive the following relation:


• When n >> ncr, this reduces to:



• Here, Z(T) is the partition function of the atom:


• In high density limit, nu depends purely on temperature 
and total number density of atoms


• Recall that we can write the emissivity as:



• In LTE limit, emissivity is a linear function of density


• For an optically thin cloud in this limit:


• If cloud is also isothermal, then this simplifies to:


• Therefore, in the optically thin, LTE limit:



• We can use measured intensity of line from some tracer to 
determine column density of that tracer provided:


- Gas is optically thin


- Tracer is in LTE


- Gas is isothermal, with known temperature


• Last condition due to fact that we need to know fu


• Even if system not perfectly isothermal, not a large error if 
fu does not vary strongly (e.g. HI 21 cm line: fu ~ 3/4 with 
little dependence on T)



• Note that result holds regardless of density distribution 
within cloud, provided that tracer is in LTE


• This is hugely important — often straightforward to 
determine gas temperature, difficult to determine density


• Optically thin condition can usually be ensured by 
choosing a tracer with a low chemical abundance (e.g. 
HCNO) or an isotopic variant of an abundant species (e.g. 
C18O)



• Given emissivity, we can also calculate radiative cooling 
rate per unit volume:


• In LTE limit, cooling rate depends on density of coolant, 
independent of density of collider


• Corollary: cooling time due to an LTE coolant is 
independent of density:



• In low density limit (n << ncr), we have:


• This can be written in terms of the collisional excitation rate 
coefficients as:


• In this limit, emission coefficient scales as n2


• Emission coefficient independent of Aul: every collision results 
in emission of a photon, collisions are the rate-limiting step



• Consequence #1: measured intensity depends on integral 
of square of density, NOT on column density


• To compute this integral, we need to know the density 
distribution of the gas along the line of sight, which is 
information we generally don’t have


• Consequence #2: radiative cooling rate becomes:


Cooling limited by rate at which collisions occur, cooling 
time scales as tcool ~ n-1



H2 cooling rate per molecule

(Assumes H2-H collisions dominate, 3:1 ortho-para mix)



• Cooling rate per atom/molecule increases with density 
until n ~ ncr, thereafter remains constant


• Since different atoms/molecules have different critical 
densities, dominant coolants vary with density even in 
absence of chemical evolution



Neufeld et al (1995)



The effects of opacity

• What happens when the gas becomes optically thick?


• Since photons emitted in gas can’t immediately escape, 
we can no longer ignore effects of the radiation field


• Therefore, need to redo our analysis of the two-level 
atom, retaining the absorption, stimulated emission terms



• In statistical equilibrium:


where:


• Problem:


- Level populations depend on Jul


- Jul depends on Iul, which depends on level populations


• In principle, need to solve simultaneously for level 
populations and radiation field at every point in the gas!



• In practice, not possible for all but the simplest systems


• Numerical solutions typically adopt iterative approach:


- Start with some guess for radiation field (e.g. Planck 
function with T = Tgas)


- Use this to compute level populations


- Solve RT problem with these level populations to obtain 
updated guess for radiation field


- Repeat with new radiation field etc…


- Stop iterating once level populations and radiation field 
have both converged within some specified tolerance



• For now, consider only a simple limiting case


• Assume external radiation field negligible and that 
photons emitted within the gas have only two fates:


- Local absorption


- Escape to infinity


• By “local”, we mean within a region small enough that 
physical conditions (density, temperature etc.) are same 
as at point where photons are emitted



• For photons of frequency ν propagating in a direction n, 
the monochromatic escape probability is simply:


• To get the full escape probability, weight by line profile 
function and integrate over frequency and solid angle:


• When we refer simply to the escape probability for a 
line, we usually mean this more general expression



• Net local absorptions (i.e. absorption - stimulated 
emission) must balance number of emitted photons that 
do not escape:


• Can use this to eliminate B coefficients from statistical 
equilibrium equation, resulting in:



• Same expression as in optically thin case, provided we 
make the substitution Aul → β Aul


• System behaves as if Aul were smaller — effect known as 
photon trapping or radiative trapping 

• Important consequence: ncr also reduced by factor of β



What density does a given  
molecule line trace?

• You’ll often see in textbooks or the astrophysical literature 
the statement that molecular line emission traces 
densities close to ncr for that particular line


• When is this actually true?


• Emission per molecule scales with n for n << ncr, constant 
for n >> ncr


• Total emission from range of densities [n, n + ẟn] is 
product of this with number of molecules in gas with 
density in this range



• Distribution of emission as function of density therefore 
depends on molecular abundance-weighted density 
probability distribution function (PDF)


• This describes fraction of total number of molecules we 
find at each density in gas


• If molecular abundance is independent of density, it is 
identical to the mass-weighted density PDF (i.e. function 
describing fraction of mass at each density)



Blue: flat density PDF


Red:  p(n) ~ n-1/2

ncrit = 104 cm-3



Log-normal PDF, 

mean 100 cm-3 



• For constant or slowly decreasing density PDFs, emission 
mostly comes from n > ncr 


• For steeply decreasing density PDFs (e.g. log-normal), 
little emission from n > ncr (if larger than peak density)


• Molecular emission can trace densities far below ncr


• Note: this effect is independent from the reduction in ncr 
caused by high optical depth



Barnes et al (2020)

Critical densities
CO   — 500 cm-3


N2H+ — 40000 cm-3

HCN — 3 ⨉ 105 cm-3



Jones et al (2023)



• “High density” tracers do not necessarily trace high 
densities — depends on density structure of cloud


• One important exception: N2H+


• N2H+ forms efficiently only once CO freezes out onto dust 
grains, hence only abundant in dense gas


• N2H+ emission therefore traces dense gas much better 
than other commonly used tracers (e.g. HCN, HCO+)



Computing the escape 
probability

• In order for escape probability formalism to be useful, we 
obviously need to be able to compute β


• In general, this is a hard problem:


- At each point, need 𝜏 for large number of angles


- Computing each 𝜏 involves line integral of α


- Need to repeat this for many points in cloud


- For N fluid elements, cost scales as N5/3



• For highly symmetric density fields, cost of computing β 
greatly reduced


• E.g. for a static slab, the average escape probability as a 
function of the optical depth of the slab is:


• Doesn’t fall off exponentially because:


1) We’re averaging over whole slab


2) Optical depth in line wings much smaller than at line 
centre



• Similar expressions exist for spheres and various other 
simple geometries


• But real molecular clouds are not particularly spherical…
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Taurus molecular cloud



• Molecular clouds do appear to be highly turbulent


• Can therefore apply another useful approximation, the 
Large Velocity Gradient approximation


• Also known as the Sobolev approximation 

• Basic idea: if there are large velocity differences between 
adjacent fluid elements, photons can escape more easily



• Consider photon emitted at point X with velocity V


• Suppose that this photon propagates to point X + ΔX, 
where velocity is V + ΔV


• What is likelihood of photon being absorbed at this point?


• Likelihood depends on size of ΔV compared to width of 
line — if ΔV >> linewidth, absorption probability is small



• Quantify this by defining a characteristic length scale, the 
Sobolev length:


Here, vth is the thermal velocity of the absorber


• Note: expression for Ls implicitly assumes that velocity 
gradient is approx. constant on scale ~ Ls


• Photons that are able to propagate a distance Ls are likely 
to successfully escape from the gas



• LVG approximation: we assume that gas density, 
temperature, chemical composition etc. remain constant 
on scales < Ls


• Obviously, more likely to be valid when Ls is small, i.e. 
when velocity gradient is large


• Allows us to convert non-local problem into a local one of 
computing escape of radiation from small fluid element 
with constant density etc.



• In LVG approximation, escape probability becomes:


where:




• Validity of LVG approximation depends on velocity 
gradients actually being large


• Good approximation in supersonically turbulent systems, 
such as GMCs


• Poor approximation in subsonic structures (e.g. prestellar 
cores), but often used anyway!



Ossenkopf (2002)

In most cases, interaction length comparable to 

size of smallest resolved structures (in simulations!)

Turbulent GMC
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Temperatures

• We finish up this lecture with a discussion of the different 
definitions of temperature that we may encounter


• Relation of this to our previous discussion of level 
populations will soon become apparent!


• Simplest definition: kinetic temperature (often just plain 
temperature, without qualifier) — temperature 
characterising small-scale thermal motions of particles


• Kinetic temperature is the T occurring in the Maxwell-
Boltzmann distribution



• NB: We usually assume all types of particles located at 
some point in space have the same T (i.e. no separate 
temperatures for charged particles, neutrals)


• Good approximation in ISM (except for cosmic rays)


• However, other important quantities exist that are also 
referred to as “temperatures”


- Excitation temperature


- Brightness temperature


- Antenna temperature



• Excitation temperature:


• Rearranging this yields:


• Excitation temperature describes level populations: 
temperature of a Boltzmann distribution that would yield 
same values



• In LTE, Tex = T


• More generally:


• When n << ncr, Tex << T. In this case, we often refer to the 
level populations as “subthermal”



• Recall that the source function is:


• Using relations between Aul, Bul, Blu, can rewrite this as:


• Therefore:



• For a cloud with constant Tex, the source function is 
simply the Planck function with T = Tex


• If the cloud is also optically thick, so that Iν = Sν, 
measuring Iν allows us to infer Tex



• Brightness temperature: measure of strength of 
radiation field


• Brightness temperature Tb at a given frequency is the 
temperature of a Planck function producing same Iν at 
that frequency:



• In the Rayleigh-Jeans limit (hν << kT), this simplifies to:


• In this limit (most commonly encountered in radio), the 
brightness temp. is a linear measure of intensity


• For an optically thick cloud, Tex ~ Tb


• If the cloud is also in LTE, T ~ Tex ~ Tb



• Antenna temperature: a measure of the power actually 
received by the telescope (usually in context of radio 
observations)


• Measured power = k TA


• Related to brightness temperature of source by:


• εr = transmission efficiency of antenna; usually ~ 1


• Pn = antenna power pattern





• Beam solid angle ΩA is the integral of the antenna power 
pattern over the sky:


• If the solid angle subtended by the source (ΩS) is much 
larger than ΩA then:


(assuming constant source brightness temperature)


• In this limit, can easily infer Tb from TA



• If source is small compared to beam (ΩS << ΩA), then we 
find instead that:


• Antenna temperature much smaller than source 
brightness temperature because of beam dilution 

• Impact of this can be substantial, particularly for 
extragalactic observations



Detections of CO(3-2) line in WLM dwarf galaxy using APEX 

Elmegreen et al (2013)Why are the measured brightness temperatures so small?



• ALMA follow-up shows that each detection is actually a 
collection of compact clouds with angular sizes ~ 1”


• APEX beam size at frequency of CO(3-2) is ~ 18” — hence 
substantial beam dilution (factor of 182 ~ 300)



Summary

• In optically thin gas, easy to solve for level populations if 
we know collisional excitation, de-excitation rates and 
Einstein coefficients


• Analogous problem in optically thick gas much harder, as 
problem becomes non-local — generally need 
approximations such as LVG to solve


• Balance between collisional, radiative de-excitation 
quantified by critical density ncrit



• At densities n >> ncrit, level populations have LTE values


• In this high density regime, observed intensity traces 
column density (if tracer is optically thin)


• At densities n << ncrit, most atoms/molecules in their 
ground state


• In low density regime, observed intensity not a good 
tracer of column density


• Cooling rate per molecule scales with n in low density 
limit, tends to constant value as we approach ncrit 



• Often quoted statement that “molecule emission traces 
gas with density close to ncrit” not always true — also 
sensitive to density distribution of cloud


• High optical depth implies radiative trapping, has effect of 
reducing effective critical density by factor of 1/β, where  
β = escape probability


• Many different temperatures we might refer to when 
discussing the ISM (kinetic, excitation, brightness, 
antenna) — important to understand the differences


