Radiative Transfer

Lecture 03

The Physics of Star Formation

Les Houches School of Physics February 22, 2024

Lecturer: Dr. Stefan Reissl

Magnetic field and ISM structure

polarized thermal 850 μ m emission from Galactic dust

- Large degree of linear polarization (<20%) suggests effective grain alignment
- Depolarized regions correspond to high column density
- Interpretation of observed polarized dust emission depend heavily on our understanding of grain dynamics

Grain Alignment Theory (as far as we know about it)

Dust polarization

Non-spherical rotating dust grains are aligned with their shorter axis with the magnetic field orientation

Dichroic extinction:

Polarized (star)light gets preferentially blocked along the longer grain axis \Rightarrow Polarization is parallel to \vec{B} .

Thermal emission:

Warm dust grains emit thermal radiation preferentially along tier longer axis \Rightarrow Polarization is perpendicular to \vec{B} .

Grain rotation axis

The inertia tensor of each object can be diagonalized \Rightarrow unique orthonormal coordinate system

 $\{\hat{a}_1, \hat{a}_2, \hat{a}_3\}$ with moments of inertia $\hat{I}_1 \ge \hat{I}_2 \ge \hat{I}_3$ Dust grains are not rigid bodies \Rightarrow internal dissipation leads to rotation preferentially around \hat{a}_1

https://www.youtube.com/watch?v=BPMjcN-sBJ4

Internal relaxation processes: Barnett relaxation (Purcell 1979; Lazarian & Roberge 1997), nuclear relaxation (Lazarian & Draine 1999b), and inelastic relaxation (Purcell 1979; Lazarian & Efroimsky 1999)

Barnett effect

Grain magnetic moment:

$$\vec{\mu}_{Ba} = \frac{\chi V h}{g \vec{\mu}_B} \vec{\omega}$$

with magnetic susceptibility $\chi = \chi' + i \chi''$

Torque in the presence of an external B-field

 $\vec{\Gamma}_{\text{Ba}} = \vec{B} \times \vec{\mu}_{Ba}$

⇒ Barnett effect causes grain precession around \vec{B} on a timescale τ_{Ba} Note: alignment is not an effect of grain charge

 $\frac{\vec{\mu}_{Ba}}{\vec{\mu}_{e}} \approx 10^{5}$ (for typical ISM conditions)

Davis Greenstein (DG) Effect

Spin re-orientation induces lattice vibrations (phonons) \Rightarrow dissipation of ω_{\parallel} into heat via

$$I_1 \omega_{\perp}^2 \rightarrow k_B T_{\rm dust}$$

The DG torque

$$\vec{\Gamma}_{\rm DG} = \frac{\chi'' v}{2\mu_0 \omega_{\perp}} (\vec{\omega} \times \vec{B}) \times \vec{B}$$

minimizes the alignment angle $\xi \rightarrow 0$ over a characteristic time scale τ_{DG}

(rotational) gas drag

Change in angular momentum per collision

$$\Delta \vec{L} = -m_{\rm g} \vec{r} \times (\vec{\omega} \times \vec{r})$$

Gas-dust collision rate

 $dR_{\rm gas} = n_{\rm g} v_{\rm th} dA$

Gas drag

$$\vec{\Gamma}_{\rm gas} = \int \Delta \vec{L} \, dR_{\rm gas} = n_{\rm g} m_{\rm g} v_{\rm th} a_{\rm eff}^4 \, \omega \vec{Q}_{\rm gas} = \hat{a}_1 \frac{I_1 \omega}{\tau_{\rm gas}}$$

with time scale τ_{gas}

Note: For a sphere
$$\vec{Q}_{gas} = -\frac{4\sqrt{\pi}}{3}\hat{a}_1$$

Infrared (IR) drag

 $\Rightarrow \text{ Total rotational drag torque}$ $\vec{\Gamma}_{\text{drag}} = -\hat{a}_1 \frac{I_1 \omega}{\tau_{\text{drag}}}$

$$\tau_{drag}^{-1} = (\tau_{gas}^{-1} + \tau_{IR}^{-1})^{-1}$$

Radiative torque (RAT)

Differential scattering on non-spherical grains leads to a net torque

$$\vec{\Gamma}_{\rm RAT} = \frac{1}{2\pi} \hat{a}_1 \int \gamma_\lambda \, a_{\rm eff}^2 u_\lambda \lambda \vec{Q}_{\rm RAT} \, \mathrm{d}\lambda$$

Parametrization of the RAT efficiency

$$Q_{\text{RAT}} = 0.4 \begin{cases} 1 & \text{if } \lambda < a_{\text{eff}} \\ \left(\frac{\lambda}{a_{\text{eff}}}\right)^{-q} & \text{otherwise} \end{cases}$$

Precession timescale around the wave vector \vec{k} on a timescale τ_k

Reissl: Radiative Transfer Feb. 20, 2024

Credit: Thiem Hoang

Alignment dynamics

Analyze the appearance of attractor points for an grain ensemble and compare the characteristic time scales for the static solution $\frac{d\vec{L}}{dt} = 0$ to derive characteristic size limits

Ì

 \vec{B}

RAT spin-up vs. randomization timescales $\tau_k/\tau_{gas} \Rightarrow a_{alig}$ Magnetic field vs. radiation field timescales $\tau_{Ba}/\tau_k \Rightarrow a_{krat}$ Barnett precession vs. randomization timescales $\tau_{Ba}/\tau_{gas} \Rightarrow a_{Larm}$

Internal alignment (IA)

If the grain undergoes strong thermal fluctuations the exchange of vibrational and rotational energy may disalign \vec{L} and $\vec{\omega}$. The angular distribution of the angle between and follows

$$f(\beta) \propto \sin\left(-\frac{L^2}{2I_1k_BT_B}\left[1 - \left(\frac{I_1}{I_2 + I_3} - 1\right)\sin^2\beta\right]\right)$$

with

$$\int_0^{\pi} f(\beta) \sin \beta \ d\beta = 1$$

Lazarian & Robergee 1997

The grain alignment direction

Reissl: Radiative Transfer Feb. 20, 2024

dust temperature

Mechanical grain alignment

Direct Monte Carlo Simulation in the free molecular flow regime

- Dimensionless gas velocity $s = v/v_{th}$ and drift: $\Delta s = (v_{gas} - v_{dust})/v_{th}$
- Skewed velocity distribution: $f(s, \Delta s, \theta)$
- Gas trajectories: $P_{\Delta s}(\theta) = \int_0^\infty f(s, \Delta s, \theta) ds$

 $= 30^{\circ}, \zeta = 62.7\%$

 $60^{\circ}, \zeta = 65.2\%$

- Fractal like dust aggregate experience • a mechanical torque $\vec{\Gamma}_{mech}$
- Mechanical torque predicts alignment with magnetic field
- It is yet unclear how $\vec{\Gamma}_{mech}$ interacts with $\vec{\Gamma}_{RAT}$

Hydrogen formation

The formation of molecular hydrogen in occurs on of grains where the surface acts as an catalyst.

Additional change in angular momentum J may induce a torque $\vec{\Gamma}_{H2}$ (Purcell torque, Pinwheel torque, rocket thrusters) :

- Formation energy (4.5 eV) is much large than any other process
- How much formation energy is transferred onto the grain surface?
- Is the $\vec{\Gamma}_{H2}$ a spin-up or a spin-down torque?

The incomplete picture

Observation Theory	Larger grains are better aligned	General alignment only active for <i>a</i> > 0.045 μm	H ₂ formation enhances alignment	H ₂ formation not required for alignment	Alignment seen when $T_{\text{gas}} = T_{\text{dust}}$	Alignment is not correlated with ferromag- netic inclusions	Alignment is lost at A _V ~ 20 mag	Alignment depends on angle between radiation and magnetic fields	Carbon grains are unaligned
Davis- Greenstein	_				-				
Super- paramagnetic	+				-	_			
Suprathermal			+	_					
Mechanical			_				_		_
Radiative alignment torque	+	+	+				+	+	+

Table taken from B-G Anderson 2013: Interstellar Grain Alignment - Observational Status

Scattering on non-spherical grains

The scattering on spherical grains can be well modelled (see 2nd lecture)

- What are the observational implications of non-spherical rotating dust grains partially aligned with the magnetic field?
- Despite the complexity of the problem, individual theories and tools to model such observations are already available but need to be applied in tandem

Dust Polarization

The Rayleigh reduction factor (RRF)

The RRF quantifies the reduction of polarization by grain precession

$$\mathsf{R} = \frac{3}{2} \left(\left\langle \cos^2 \xi \right\rangle - \frac{1}{3} \right) \left(\left\langle \cos^2 \beta \right\rangle - \frac{1}{3} \right)$$

where $\left<\cos^2\xi\right>$ in the ensemble average

In the reference frame of the dust the polarization is determined by the cross sections parallel $C_{||}$ and perpendicular C_{\perp} to the grain rotation

In the reference frame of the polarized light the cross sections are

•
$$C_x = C_R + \frac{1}{3}R(C_{||} - C_{\perp})$$

• $C_y = C_R + \frac{1}{3}R(C_{||} + C_{\perp})(1 - 3\sin^2\theta)$
• $C_R = \frac{2C_{||} + C_{\perp}}{3}$

where C_R represents a randomized grain

Dichroic extinction

In the reference frame of the Stokes vector:

• Total extinction:

٠

Dichroic extinction $\Delta C_{ext} = \frac{1}{2}(C_{ext,x} - C_{ext,y})$

no grain alignment R=0

•
$$C_{ext} = C_R$$

•
$$\Delta C_{ext} = 0$$

perfect grain alignment R=1

LOS perpendicular to \vec{B} i.e θ =0°

 $C_{ext} = \frac{1}{2}(C_{ext,x} + C_{ext,y})$

- $C_{ext} = \frac{1}{2}(C_{\perp} + C_{||})$
- $\Delta C_{ext} = \frac{1}{2}(C_{\perp} C_{\parallel})$

LOS parallel to \vec{B} i.e θ =0°

•
$$C_{ext} = C_{||}$$

• $\Delta C_{ext} = 0 \implies$ No dust along the LOS

The same procedure for the absorption cross sections C_{abs} and ΔC_{abs}

The RT equation for aligned dust

The cross sections incorporate now the grain alignment physics

Dust RT equation:

Where does circular polarization come from in the first place?

Circular polarization

Observational Implications

RAT alignment on small scales

Predictions of RAT alignment theory:

- Polarization scales with the radiation field
- Angular dependence of \vec{k} and \vec{B} field

Observational confirmation

Heating of aligned grains dependent on orientation (?)

The heating effect may not be efficient enough to account for the flux!

Observational confirmation

Polarization holes in Bok Globules

Circular polarization as a magnetic field tracer

Analytic representation of an hourglass field

- Orientation of field lines along the LOS lead to characteristic polarization pattern
- Circular polarization is very low (beyond observation)
- Center is severely depolarized

Dust polarization on large scales

Polarization dispersion analysis

Polarization angle dispersion function:

$$S(\vec{r},\delta) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left[\chi(\vec{r}) - \chi(\vec{r} + \vec{\delta_i}) \right]}$$

Grain alignment:

1. RAT theory

2. With fixed radius $a_{\rm eff} = 100 \ \mu m$

Angular dependency

Introducing a single star reveals the predicted angular dependency

On the direction of alignment

If dust grains would align with \vec{k} and not \vec{B} on large scales, this would have serious consequences for magnetic field observations.

Modelling shows that the grain sizes that could align with \vec{k} would have been destroyed by rotational disruption in the first place.

The origin of dust polarization in the MW

SILCC MHD simulation

Change in polarization along the LOS

The origin of dust polarization in the MW

• The dust polarization is reduced along distinct directions (green, brown)

Maconi+ 2023

• This is due to both the turbulent medium as well as grain alignment