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Outlook and Motivation



Outlook
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Lecture 01: RT Theory, RT with polarized light, Approximate solutions, 
Monte Carlo algorithms 

Lecture 02: optical properties of dust, more Monte Carlo algorithms, 
(stochastic) heating of grains 

Lecture 04: RT of polarized synchrotron emission and Faraday rotation 

Lecture 03: dust grain alignment dynamics, dust polarization (scattering, dichroic 
extinction, thermal emission), RT of polarized lines, Zeeman effect  



Observables: Neutrinos
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Supernovae, black holes, and stars generate neutrinos

A tool to study:
• hydrogen burning (CNO cycle)
• heavy element abundance
• star core temperature
• supernova explosion mechanism, Neutrinos are hard to detect and require gigantic detectors



Observables: Gravitational waves
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• Merging neutron stars or black holes 
cause minimal ripples in space-time

• Detection via large interferometers

• Allows to observe events further back into 
the history of our universe



RT is a multi-scale problem
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Micro- to millimeter scale: Dust grows by sticking and aggregation of smaller particles. Shapes and materials govern emission, 
absorption, and polarization

1 – 1000 AU: Dust obscures the central star casting shows onto the 
outer disk. Gas and dust interactions impact heating, movement, and 
chemistry

1 – 1000 ly: Dust is hiding young stars from direct observations. 
Polarized gives a hint about the structure of the magnetic field involved 
in star formation  

1 kly – 100 kly: Supernovae and stellar feedback shape the structure of the entire galaxy. Small dust 
particles are stochastically heated leading to an excess flux in some wavelengths bands. Rotating grains 
lead to anomalous microwave emissions 

BUT: All we “see” in the end is light with information encoded in
1. Intensity
2. Frequency / wavelength
3. Polarization 



RT is hard!
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direct radiation

scattered radiation

absorbed and re-emitted 
radiation

• Multiple sources: Each star, dust grain, and gas molecule is a 
source emitting light in characteristic wavelengths 

• Scattering: Shorter wavelength may scatter on dust several 
times leading to a diffusion of radiation 

• Emission: Radiation is absorbed by gas and dust and re-
emitted in another wavelength and direction

• Absorption: Changes the local parameters by heating and 
excitation  of dust and gas

RT in astrophysics is a multi-physics, 3D, and time dependent 
problem and the radiation field can mostly be modeled by 
numerical approximations 

NGC 7023 Iris Nebula



Problems in (Radiation) Astronomy

Reissl: Radiative Transfer Feb. 20, 2024

The detection and analysis of extraterrestrial light allows to study the matter 
beyond your earth and solar system

Problems: 
• Objects are often obscured by dust and 

foreground objects
• Observations are always projections of 3D 

information
• The earth atmosphere filters partly the incoming 

radiation  

Light intensity and polarization carries information:
• Emission and absorption lines: Abundance of elements, composition 

of dust …
• Spectral energy distribution: Gas temperature …
• Polarization: Magnetic field direction and strength …
• Line shift: Gas velocity …



Basic RT Theory



Radiative quantities
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𝑑𝐼 = 
𝑑𝐼

𝑑
per frequency

𝑑𝐼 =
𝑑𝐼

𝑑
per wavelength

𝑑𝐼𝐸 =
𝑑𝐼

𝑑𝐸
= 
𝑑𝐼

𝑑𝐸
per energy

𝑑𝐼 Ԧ𝑟, ො𝑛 =
𝑑𝐸

cos 𝜃 𝑑𝐴 𝑑𝑡 𝑑 𝑑
[ 𝑒𝑟𝑔 𝑐𝑚−1 𝑠−1 𝑠𝑟−1 𝐻𝑧−1]

Intensity (spectral, monochromatic) :

Where 𝐼 = 0׬
∞
𝐼 𝑑 [ 𝑒𝑟𝑔 𝑐𝑚−1 𝑠−1 𝑠𝑟−1] is the total (bolometric) intensity

Note: The intensity is a scalar quantity but depends on position Ԧ𝑟 and direction ො𝑛



Propagation in vacuum
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𝑑𝐴

𝑑1 =
𝑑𝐴

𝑑𝑟

𝑑𝑟

𝑑𝐴

𝑑2 =
𝑑𝐴

𝑑𝑟

Consider symmetry  𝐼1 = 𝐼2 i.e. 
𝑑𝐼

𝑑𝑟
= 0



Energy density 
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𝑑𝐴

𝑑𝑉 = 𝑑𝑟𝑑𝐴 𝑐 𝑑𝑡

 energy density 𝑢 =
1

𝑐
׬ 𝐼 𝑑 =

4𝜋

𝑐
J

𝑑𝐸

cos 𝜃 𝑑𝑉 𝑑
=

𝑑𝐸

cos 𝜃 𝑐 𝑑𝐴 𝑑𝑡 𝑑

𝐼

𝑐

𝑑𝑟 = 𝑐 𝑑𝑡

with mean intensity J =
1

4𝜋
׬ 𝐼 𝑑

[ 𝑒𝑟𝑔 𝑐𝑚−3]

[ 𝑒𝑟𝑔 𝑐𝑚−1 𝑠−1]



Isotropy of the radiation field
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Anisotropy parameter (dimensionless): 𝛾 =
׬ 𝐼 ො𝑛𝑑

׬ 𝐼 ො𝑛 𝑑

𝛾 = 1

𝛾 = 0

ො𝑛

ො𝑛

Note: For isotropic radiation 𝐼 = 𝐽

ො𝑛

ො𝑛

ො𝑛
ො𝑛



Propagation in a medium
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L

L

𝑑𝑟

• Volume element: 𝑉 = 𝐿2 𝑑𝑟 [ 𝑐𝑚3]

• Number density 𝑛 =
𝑁

𝑉
[ 𝑐𝑚−3]

• Geometric cross section  = 𝜋𝑎2 [ 𝑐𝑚2]

Probability for a photon to “hit” a particle ~
surface of all particles

surface of the slab
= 
𝑛𝐿2 𝑑𝑟

𝐿2
= 𝑛 𝑑𝑟

N particles with radius a

 Light extinction (Beer–Lambert law): 
𝑑𝐼

𝑑𝑟
= −𝑛 𝐼



Light emission of the medium
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L

L

𝑑𝑟  Change in intensity 
𝑑𝐼

𝑑𝑟
= + 𝑗

Radiation can be emitted, adding energy to beam

emissivity for (spontaneous) emission

𝑑𝑗 Ԧ𝑟, 𝑛 =
𝑑𝐸

𝑑𝑉 𝑑𝑡 𝑑 𝑑
,  𝑗  



1D monochromatic RT equation
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𝑑𝐼
𝑑𝑟

= −𝑛𝐶 𝐼 + 𝑗

re-written with density  and opacity 

𝑑𝐼
𝑑𝑟

= − 𝐼 + 𝑗

𝑛:   Number density [ 𝑐𝑚−3]
𝐶: Cross section [ 𝑐𝑚2]

: Mass density [𝑔 𝑐𝑚−3]
: opacity of extinction [ 𝑐𝑚2 𝑔−1]



Solution to the RT problem
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Source function

𝑆 =
𝑗


Optical depth

( in thermal equilibrium S = 𝐵(T) ) 

 = න
0

𝐿

 𝑟 (𝑟) 𝑑𝑟

 =  𝑟  𝑟 𝐿 =
𝐿

𝑙

where 𝑙 is the mean free path length of the 
photons

𝐼  =𝐼 0 𝑒− + 0׬
 𝑒−  −

′

𝑆 
′ 𝑑

′

 > 1 optically thick

 > 1 optically thin

Are we already done?



RT with polarized radiation



Quantifying polarization
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Definition: Ԧ𝑆 = 

𝐼
𝑄
𝑈
𝑉

=

𝐸𝑋
2 + 𝐸𝑌

2

𝐸𝑋
2 − 𝐸𝑌

2

𝐸45
2 + 𝐸−45

2

𝐸𝑐𝑤
2 − 𝐸𝑐𝑐𝑤

2

𝑃𝑙 =
𝑄2 + 𝑈2

𝐼

𝑃𝑐𝑖𝑟𝑐 = ൗ𝑉 𝐼

𝛘 =
1

2
arctan( Τ𝑄 𝑈)

Linear polarization:

Orientation angle:

Circular polarization:

where  ෡𝐾 is the 4x4 Müller Matrix and 

Ԧ𝐽 = 

𝑗𝐼
𝑗𝑄
𝑗𝑈
𝑗𝑉

is the 4 component emissivity

𝑑 Ԧ𝑆

𝑑𝑟
= − ෡𝐾 Ԧ𝑆 + Ԧ𝐽

𝑑𝐼

𝑑𝑟
= −𝐼 + 𝑗

⇓



Observational realization
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Full Stokes vector can be constructed from four distinct positions of the half-wave plate 



Choice of the coordinate system
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෡𝐾=

𝑘11 𝑘12 𝑘13 𝑘14
𝑘21 𝑘22 𝑘23 𝑘24
𝑘31 𝑘32 𝑘33 𝑘34
𝑘41 𝑘42 𝑘43 𝑘44

 ෡𝐾’=

𝑘11 𝑘12 0 0
−𝑘12 𝑘11 0 0
0 0 𝑘11 𝑘34
0 0 −𝑘34 𝑘11

i.e. the matrix can be transformed via ෡𝐾′= ෠𝑅() ෡𝐾 with the rotation matrix

෠𝑅()=

1 0 0 0
0 cos sin 0
0 − sin cos 0
0 0 0 1

The orientation of the coordinate system of the Stokes vector Ԧ𝑆 is a free parameter!  

For polarized dust emission e.g. exists always a rotation such that

Note: The matrix ෡𝐾’ has only 3 remaining independent components!

Ԧ𝐽 = 

𝑗𝐼
𝑗𝑄
𝑗𝑈
𝑗𝑉

 Ԧ𝐽‘ = 

𝑗𝐼
𝑗𝑄
0
0

The same for the emissivity

where 𝑗𝑈 and 𝑗𝑉can be eliminated

Note: I and V do not rotate



Analytical solution
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𝑑

𝑑𝑟

𝐼
𝑄
𝑈
𝑉

= -

𝑘11 𝑘12 0 0
−𝑘12 𝑘11 0 0
0 0 𝑘11 𝑘34
0 0 −𝑘34 𝑘11

𝐼
𝑄
𝑈
𝑉

+

𝑗𝐼
𝑗𝑄
0
0

• Assume that the extinction and emission are constant along a length L
• Solve the upper left sub-set by substituting 𝐴 = 𝐼 + 𝑄 and  𝐵 = 𝐼 − 𝑄
• Solve the upper left sub-set as an eigenvalue problem

The solution is then:

• 𝐼 + 𝑄 = 𝐼0 + 𝑄0 exp[−𝐿 (𝑘11-𝑘12)] + (𝑗𝐼 + 𝑗𝑄)

• 𝐼 − 𝑄 = 𝐼0 − 𝑄0 exp[−𝐿 (𝑘11-𝑘12)] + (𝑗𝐼 − 𝑗𝑄)

• U = [𝑈0 cos(𝑛𝐿𝑘34) − 𝑉0 sin 𝐿𝑘34 ]exp[−𝑛𝐿 𝑘11]
• V = [𝑈0 sin(𝑛𝐿𝑘34) + 𝑉0 cos(𝐿𝑘34)]exp[−𝑛𝐿 𝑘11]



Numerical solver
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In general a numerical solution of the full set of RT equations including polarization does not exist!

 A solution can only ba approximated by numerical means e.g. 
Runge–Kutta–Fehlberg method (RFK45):

1. Select allowed error e.g. err = 10−6

2. Runge–Kutta solutions of the 4-th order Ԧ𝑆4 and 5-th order Ԧ𝑆5 with step size 𝑑𝑟
3. Determine minimal error of all Stokes components 𝜀 = min(I, Q, Q, U) 

with {𝐼,𝑄,𝑈,𝑉} =
Ԧ𝑆4− Ԧ𝑆5

err Ԧ𝑆5

• If 𝜀>1 select a smaller step size e.g. 𝑑𝑟 → 0.25 𝑑𝑟 𝜀−0.2

• If 𝜀>1 select a smaller step size e.g. 𝑑𝑟 → 4 𝑑𝑟



Ray-tracing of images
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If scattering is ignored an image can be created by tracing individual rays and 
solving the RT equation along its line-of-sight (LOS) 

1. Optimize the umber 
of rays (sub-pixeling)

2. Interpolate between 
cell to allow for higher 
order integration

3. Solve the RT 
problem between 
individual steps 𝑑𝑟



Scattering of radiation
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𝑑 Ԧ𝑆

𝑑𝑟
= − Ԧ𝑆 ෡𝐾𝑎𝑏𝑠 + ෡𝐾𝑠𝑐𝑎 + Ԧ𝐽em + Ԧ𝐽sca

𝑑 Ԧ𝑆

𝑑𝑟
= −෡𝐾𝑎𝑏𝑠 Ԧ𝑆 + Ԧ𝐽em

Analytical solution and 1D integration schemes are no longer viable!



Scattering on particles leads to an additional 

source Ԧ𝐽sca and ෡𝐾𝑠𝑐𝑎 sink term



Monte Carlo MC method



Monte Carlo method
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• The MC method is a set of probabilistic techniques, which 
all have in common that they solve equations by sampling 
random numbers.

• The MC method is based on random numbers but is itself 
not random but probabilistic!

• An algorithm samples physical quantities 𝑋 from a 
probability density function 𝑝(𝑥) (PDF) such that the 
probability of finding 𝑋 in an interval [𝑋, 𝑋 + 𝑑𝑥] is equal 
to 𝑝 𝑥 𝑑𝑥 where 𝑝 𝑥 mimics nature.



Random number generators
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An algorithm that generates a sequence of (pseudo) random numbers 𝑧 distributed in the 
interval 𝑧 [0,1[.

Demands: • uniformly distributed in [0,1[
• fast and low in memory demand
• reproducibility

Examples: a:  multiplier
c:  increment
m: modulus number
𝑦0: seed

Linear congruential generator:
• A sequence of number is generated by 

𝑦𝑛+1 = (𝑎𝑦𝑛+ c) mod m

• Random number 𝑧𝑛 =
𝑦𝑛

𝑚

KISS (Keep it Simple Stupid)
• A set of random number generators based on bit-shift operations
• Super fast with nearly no memory demand and a period of 295



Monte Carlo examples
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Sample random points on a sphere with 
equal spacing 

Equal spacing in  and :
• [0,2[  𝑛= 2 𝑧𝑛
• [0,[  𝑛=  𝑧𝑛+1

Correct method
Define parameters:
• 𝑢 = 1 − 2 𝑧𝑛
• 𝑝 = 2 𝑧𝑛+1
• 𝑠 = 1 − 𝑢2

unit vector ො𝑛 =
𝑠 cos 𝑝
𝑠 sin 𝑝
𝑢

Sample likely wavelengths of a star





𝐿 • Pre-calculate table for with

𝑧𝑖 =
𝑖׬
𝑖+ ∆

𝐿 𝑑

0׬

𝐿 𝑑

• Sample a  e.g. from table 𝑧𝑖𝑖

• Energy per wavelengthts and unit time 𝑡 for

𝑁𝑝ℎ photon (packages) 
𝐸
𝑡

=
𝐿
𝑁𝑝ℎ

Wrong way 

Time demanding operations!



Simple MC RT
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interaction with medium
wall collision

• Beer–Lambert law: 𝐼 = 𝐼0𝑒
−

• Optical depth: 𝑑 =  𝑑𝑟

What is PDF 𝑓() to “travel” a small path element 𝑑𝑟 ?

𝑓  d =
𝐼0𝑒

−d

0׬


𝐼0𝑒−d
=

𝐼0𝑒
−

𝐼0
d = 𝑒−d

 PDF  𝑓  = 𝑒− [0,1[
 Distribution of optical depth can be sampled from 𝑆 = −ln(1 − 𝑧)

• Optical depth along path within the grid 𝐺 = σ𝑖 𝑖 𝑖𝑟𝑖

• Interaction with medium when 𝐺 > 𝑆

• Re-scale last 𝑟𝑖 such that 𝐺 = 𝑆

(sub-grid resolution) 

𝑟𝑖−1

𝑟𝑖

𝐺 > 𝑆

𝐺 = 𝑆

𝑟𝑖−2



Interaction with the medium
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scattering
absorption and emission

Define albedo  =

𝑠𝑐𝑎


𝑎𝑏𝑠+

𝑠𝑐𝑎

• < z scattering event

• > z absorption event

Problems with simple MC:

• Photons do not interact at all 
 radiation field may be undetermined in same cells

• Only a few photons in direction of the observer 

 bad signal-to-noise in the observations 
1

𝑁𝑝ℎ



Forced first scattering
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scattering

• Determine max to the cell border
• Sample  𝑊 = 1 − 𝑒− 𝑚𝑎𝑥

• New optical depth is sampled from fs= −ln(1 − 𝑧𝑊) to guarantee at 
least one scattering

max

fs

 Improves diffusion of the radiation field but not the image quality



Peel-off technique
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scattering
absorption and emission

PDF 𝑝 ො𝑛, ො𝑛𝑜𝑏𝑠 to scatter in direction ො𝑛𝑜𝑏𝑠 of the observer is 

𝑝 ො𝑛, ො𝑛𝑜𝑏𝑠 𝑑 ො𝑛𝑜𝑏𝑠 =
( ො𝑛, ො𝑛𝑜𝑏𝑠)

4
dො𝑛𝑜𝑏𝑠

where ( ො𝑛, ො𝑛𝑜𝑏𝑠) is the scattering phase function (s. next lecture)

• Determine obs from the scattering point to the observer
• Weight 𝑊PO = 𝑝 ො𝑛, ො𝑛𝑜𝑏𝑠 𝑒−obs

• Send one photon in original direction a peel-off photon in 
direction ො𝑛𝑜𝑏𝑠

• Correct the energies between the photons: 
- 𝐸orig = 𝐸 (1 −𝑊PO)

- 𝐸PO = 𝐸 𝑊PO

obs

obs

obs



Direct photon
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𝐴det

𝐴star =  𝑅star
2

obs

detector

• Determine obs from the position of the star to the observer

• Detected intensity 𝐼det → 𝐼det + 
𝐴star

𝐴det
𝐼𝑠𝑡𝑎𝑟 𝑒

−obs



Weighted MC RT scheme
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scattering
absorption and emission

Peel-off photon

Forced photon

Direct photon

Combining the techniques of forced first scattering, peel-off, 
and direct photon the signal-to-noise increases “better” 

than 
1

𝑁𝑝ℎ



RT in a dusty medium



detecting disk shadows
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Ginsk+ 2021

Krieger+ 2024



What does dust look like?
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Interplanetary dust

Soot in the earth athmosphere

Laboratory experiment

Polycyclic aromatic hydrocarbons (PAH)

Theoretical model

meteor

1 nm

100 nm
1 µm

1 cm
(effective) grain size: 𝑎eff =

3 3

4
𝑉grain

“typical” dust



Lifecycle of dust
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