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how do 
cosmic rays travel?

how do they
disperse?

how fast 
do they travel?

wicked facts
& beautiful models

super rays 
to reveal gas

Millikan & Cameron 1928: the creation of atoms in a single act,  
not in stars, but in interstellar space, Δm c2 radiated as cosmic rays



which energy for what?
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local cosmic-ray energy density
Voyager 1  nuclei+e > 3 MeV/n : uCR = 0.83 - 1.02 MeV m3  
heliosphere demodulated spectra uCR ≈ 2 MeV m3  

local magnetic-field energy density Voyager 1 
Btot = (0.56 ± 0.01) nT 0.78 ± 0.03 MeV m3  

local gas pressure   K cm-3  

so uth = 0.49+0.24-0.16 MeV m-3  
turbulent kinetic energy densities  

CNM:  

LNM:  

WNM: 

⇒ B2/2μ0 =
p
k

= N
V

T = 103.58±0.175

1
2 ρσ2

v = 0.6 MeV m−3( nHI

30 cm−3 ) ( σv HI

1.7 ± 0.3 km/s )
2

1
2 ρσ2

v = 0.5 MeV m−3( nHI

3 cm−3 ) ( σv HI

5.0 ± 0.2 km/s )
2

1
2 ρσ2

v = 0.4 MeV m−3( nHI

0.5 cm−3 ) ( σv HI

10.3 ± 0.3 km/s )
2

from Boschini+20 data

Cummings+2016

Jenkins & Tripp 2011

local energy 
equipartition

Hard & Kalberla 2007
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cosmic-ray feedback on galaxy evolution

delayed+displaced 
energy transfer

added  
pressure

more  
compressibility

against cloud 
collapse

push  
fountains

push  
winds

diffuse-dense 
gas circulation

alter  gas 
accretion

ionisation & 
chemistry

 GeV CRays 
self or interstellar 

confinement? 
diffusion coeff κ(E)? 

how uneven κ(E)? 
halo extent?

≳

< 100 MeV CRays 
sources? 

diffusion properties? 
why strong variations?GeV CRays  

as gas tracers

> 100 TeV CRay  
acceleration? 

sources?



gas-rich dwarf galaxies
Mtot = 1011 M⨀, Mb = 109 M⨀ , SFR ∼ 1 M⨀ /yr, starting from smooth gas &  smooth B 
multiphasic gas down to 9-pc resolution, ideal MHD with RAMSES 3 1028 m2/s
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Nunez-Castineyra+2022

uturb & uCR > utherm & uB  
on 100- 200 pc scales



gas & star-formation response to cosmic rays
R > 2 kpc : increased  PCR pressure => SFR suppressed by < 50% 

R < 2 kpc : increased  PCR and <B>x3.5  where eCR  1-2 eV/cm3 => SFR suppressed by 2.5 
not SN-induced turbulence, but role of increased fountains? gal. wind?

≳
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Nunez-Castineyra+2022
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gas & star-formation response to cosmic rays
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not SN-induced turbulence, but role of increased fountains? gal. wind?
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low-energy, 
ionising 

cosmic rays



∲ermi
loss functions  range functions

cosmic-ray losses

∫s
nISM ds = Rk(Einitial) − Rk(Efinal)

in molecular gas  
(thick curves) 

in atomic gas   
(thin curves)

{continuous loss L(E) = ∫ ΔEmax

0 E′ 
dσ(E, E′ )

dE′ 
dE′ 

catastrophic loss L(E) ∼ Eσ(E)
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Fig. 1. Total energy loss functions of primary and secondary CR par-
ticles k (protons, electrons and positrons, and photons), computed for
a medium composition given in Table A.1 (Lk, thick black lines) and
for atomic hydrogen (Lk,H, thin grey lines). Protons (upper panel): ion-
isation losses (short dashed lines) and pion production (dotted lines);
the vertical dotted line shows the energy, Eas, at which the proton loss
function changes its asymptotic behaviour from ↵ = 1.28 to ↵ = 1.08.
Electrons and positrons (middle panel): ionisation losses (short dashed
line), BS (long-dashed line), and synchrotron losses with the uncer-
tainty on the magnetic field strength (shaded area, see Appendix A.2);
the vertical dotted line shows the transition energy, Esyn, between BS
(↵ = 1) and synchrotron (↵ = 2) losses. Photons (lower panel): pho-
toionisation losses (dash-dotted line), Compton scattering (dotted line),
and pair production (short-dashed line).

In the CSDA framework, the kinetic energy of a CR particle
decreases from E0 to E after traversing a column density

N = Rk(E0) � Rk(E). (10)

The local spectrum at that N and energy E is then related to the
IS spectrum at N = 0 and energy E0 via (see PGG09)

Lk(E) jk(E,N/µ) =
1
2

Lk(E0) jISk (E0), (11)

where µ is the cosine of the pitch angle. The factor of 1/2 in
Eq. (11) takes into account that only half of the IS CRs penetrates

Fig. 2. Total range functions, Rk(E), of primary and secondary CR parti-
cles (thick black lines), Eq. (9). The inset shows the total range functions
multiplied by Āmp, to highlight the behaviour at large surface densi-
ties. For comparison, the range functions for atomic hydrogen are also
plotted (thin grey lines).

into the semi-infinite medium. This relation directly follows
from a solution of the transport equation for the CSDA regime
(Ginzburg & Syrovatskii 1964; Berezinskii et al. 1990),

µ
@ jk
@N
� @
@E

(Lk jk) = 0, (12)

assuming no sources. As pointed out in Sect. 3, it is sufficient
to analyse the CR propagation for µ = 1 to calculate the total
ionisation rate (see Sect. 6). The CSDA is a very simple and
efficient approach which, of course, has certain limitations (see
also Sect. 4).

The CSDA is formally no longer applicable when catas-
trophic losses dominate, although in some cases it may
still be used (with the corresponding loss function, Eq. (5))
to qualitatively describe propagation of CRs. Strictly speak-
ing, when both continuous and catastrophic loss processes
are present, Lk in Eq. (12) should include only the contin-
uous processes, while the catastrophic processes (with the
cross section �k) should be described by an additional term
�k jk on the left-hand side. In the following, we discuss the
effect of catastrophic losses on propagation of high-energy
CR electrons (Sect. 4.2) and employ a transport equation
for this regime to describe propagation of secondary photons
(Sect. 5.1.1).

4. Propagation of CRs at high column densities

4.1. Cosmic- ray protons

At energies larger than E⇡ the interaction between CR protons
and the medium leads to the production of pions. Since the pion
rest mass is significant, CR protons lose a non-negligible fraction
of their energy in each collision (Schlickeiser 2002). Such losses

A111, page 4 of 20
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low-energy cosmic-ray gradients
from Voyager CR data : ζH

CR = (1.51 − 1.64) × 10−17 s−1
TAKE-HOME MESSAGE ζ ≠ 10−17 s−1

ζ = ℱ(N)

PM+ (2023)

Our  models have been implemented in a number of papers, e.g.: 
Sternberg+(2021): HI-to-H2 transition in dust-free IS gas; 
Redaelli+(2021): CRIR in the prestellar core L1544; 
Bovino+(2021): chemical analysis of prestellar cores in Ophiuchus; 
Lupi+(2021): ortho-to-para H2 ratio in star-forming filaments; 
Gaches+(2022a): carbon cycle emission (C,C+,CO) in MCs; 
Gaches+(2022b): astrochemical modelling for JWST observations; 
O'Donoghue+(2022): chemistry in dense cores; 
Bialy+(2022): CRIR through NIR spectroscopy; 
Bracco+(2022): multiphase ISM, Faraday tomography; 
Smirnov-Pinchukov+(2022): chemistry in PPDs; 
Ruaud+(2022): C18O in PPDs; 
Sipilä+(2022): CR induced desorption of IS ices; 
Arslan+(2002): CRay induced sputtering process on icy grains; 
Sabatini+(2023): ALMA maps of CR ionisation rate in HM SFRs; 
Luo+(2023a): CR ionisation rate in IC348 
Luo+(2023b): CR ionisation rate in diffuse clouds

ζ(N)

Voyager

Padovani+2023   

ARTICLESNATURE ASTRONOMY

there is no significant gradient of the intensities across a wide region 
of the VLISM.

Discussion
The crossings of the heliopause by the Voyager 1 and Voyager 2 
spacecraft showed significant differences in the behaviour of the 
energetic particle populations. At Voyager 1, it appears that inter-
stellar flux tubes had invaded the heliosphere and provided exit 
paths to the VLISM for ACRs and entrance paths from the VLISM 
for GCRs before the heliopause crossing. When Voyager 1 entered 
these flux tubes in the heliosheath, the result was occasional, strong 
anticorrelations in GCR and ACR particle intensities. Similar 
anticorrelations of ACRs and GCRs were seen at Voyager 2 but in 
the VLISM just past the heliopause rather than inside the inner 
heliosheath. This suggests that Voyager 2 may have been on mag-
netic field lines in the VLISM that were connected back to the flank 
of the heliopause. Supporting this concept was the observation of 
strong streaming of ~0.5–35 MeV protons along the magnetic field 
line for ~66 d after the Voyager 2 heliopause crossing in the direc-
tion from the flank towards the nose of the heliosphere. The magni-
tude of the streaming is somewhat variable but generally increases 
with distance travelled by Voyager 2, although the intensity of the 
particles is decreasing. At the same time the magnetic field direc-
tion is not changing13, suggesting that the streaming is controlled by 
conditions at a remote source, presumably at the connection point 
to the heliopause.

There appear to be cosmic ray boundary layers on both sides of 
the heliopause, with the outer one only being evident at the position  

of Voyager 2. In these layers the GCRs are modulated. In the case 
of Voyager 2, the layer on the inside of the heliopause coincides 
with the newly discovered magnetic barrier13, which is marked by a 
region of small but significant anisotropies of ~0.5–35 MeV protons.

In the case of the Voyager 1 crossing of the heliopause, there was 
a persistence of ACRs in the VLISM that depended on mass (heavier 
particles persisted longer) and on pitch angle (ones with pitch angles 
near 90° persisted longer). This effect was not seen at Voyager 2 and 
implies that the gradients of the magnetic field strength and/or the 
pitch angle dependences of the diffusion coefficient were different 
in the two cases6,20.

Comparison of the Voyager 1 and Voyager 2 energy spectra of 
H, He and electrons at two positions in the VLISM separated by 
~167 au shows that there is no significant intensity gradient of these 
particles over that region.

Summary
The heliopause is the contact surface where the interstellar and 
solar plasmas meet at the outer boundary of the heliosphere. As 
Voyager 1 approached the heliopause in 2012, it found two regions 
where the interstellar magnetic field and GCRs had invaded the 
outer edge of the heliosphere, indicating a boundary that was more 
complex than a single, uniform contact surface. Voyager 2 did not 
find the same invasion six years later. Instead, it found a layered 
region in the local interstellar medium just outside the heliopause 
where the GCRs are modulated and the ACRs from inside are 
streaming outward along the interstellar magnetic field, which is 
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Fig. 6 | Intensities of O nuclei with 5.4–13.9!MeV per nucleon in the 
vicinity of the Voyager 1 and Voyager 2 heliopause crossings. The symbol 
〈A, C〉 indicates an average of LET A and LET C intensities. The insets 
show the directions of the telescope boresights in the N–T plane and the 
magnetic field direction in the same plane for specific days2,13. The dotted 
vertical lines show times of heliopause crossings. Error bars represent 
±1!s.d. a, Voyager 1. b, Voyager 2.
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Fig. 7 | Energy spectra of electrons (e+ + e−), H nuclei and He nuclei 
observed by the CRS telescopes on Voyager 1 and Voyager 2. The Voyager 
1 data are from Cummings et al. 11 and the descriptions and data sets used 
are described there. For Voyager 2, the same techniques were employed 
with slight differences described in Methods. The two lines labelled 
‘Cummings et al . 11’ are from the GALPROP DR model and represent 
estimates of the interstellar spectra of H and He (ref. 11). The dotted line is 
an estimate of the interstellar e+ + e− energy spectrum, which is identical 
to the estimate of the interstellar e− energy spectrum of Potgieter et al.21. 
The higher-energy data are from ground-based observations22,23. Error bars 
represent ±1!s.d.
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Stone+2019

WHAT VOYAGER SPACECRAFTS 
 ARE TELLING US

The two spacecraft share comparable cosmic-
ray fluxes (90% agreement) in spite of the 
different crossing points of the heliopause.

Stone+2019 PARAMETERISATION OF THE COSMIC-RAY SPECTRUM

PM+ (2022)

jIS
k (E) = C

Eα

(E + E0)β eV−1 s−1 cm−2 sr−1

M. Padovani et al.: Cosmic rays in molecular clouds probed by H2 rovibrational lines

Fig. 2. Energy loss function for electrons colliding with H2 including the contribution of synchrotron losses (solid black line). Coloured lines show
the different components, and the following references refer to the papers from which the relative cross sections have been adopted: momentum
transfer (‘m.t.’, solid blue; Pinto & Galli 2008); the rotational transition J = 0 ! 2 (solid green line; England et al. 1988); vibrational transitions
v = 0 ! 1 (solid red line; Yoon et al. 2008) and v = 0 ! 2 (dashed red line; Janev et al. 2003); electronic transitions summed over all the triplet
and singlet states (solid orange and magenta lines, respectively; Scarlett et al. 2021a); ionisation (solid cyan line; Kim et al. 2000); bremsstrahlung
(solid grey line; Blumenthal & Gould 1970; Padovani et al. 2018b); and synchrotron (solid yellow line; Schlickeiser 2002; Padovani et al. 2018b).
Dash-dotted brown lines show the Coulomb losses at 10 K for ionisation fractions, xe, equal to 10�7 and 10�8 (Swartz et al. 1971).

factor of ' 3 larger between 0.05 and 0.1 eV due to the different
assumption on temperature and ortho-to-para ratio, and is up to
20 times larger in the range 7�12 eV, mainly due to the updated
X

1⌃+g ! b
3⌃+

u
excitation cross section. For our purposes, the

latter difference is especially important for the derivation of the
spectrum of secondaries below the H2 ionisation threshold.

2.3. Spectrum of secondary electrons

We extend the solution of the balance equation, Eq. (27) in Ivlev
et al. (2021), down to 0.5 eV to compute the secondary electron
spectrum at various H2 column densities. We also checked the
effect of a change in the composition of the medium, including
a fraction of He equal to '20% (see Table A.1 in Padovani et al.
2018b). However, the additional contribution to the spectrum of
secondaries is on average smaller than 3% and we therefore dis-
regard it. For completeness, in Appendix A, we show the energy
loss function for electrons colliding with He atoms and the cross
sections adopted for its derivation.

For the calculation of the secondary electron spectrum, we
assumed the analytic form for the interstellar CR spectrum from
Padovani et al. (2018b),

j
IS
k

(E) = C
E
↵

(E + E0)�
eV�1 s�1 cm�2 sr�1 , (2)

where k = e, p. The adopted values of the parameters C, E0, ↵,
and � are listed in Table 2. For protons we assume two possi-
ble low-energy spectral shapes: one, with ↵ = 0.1, reproduces
the most recent Voyager 1 and 2 data (Cummings et al. 2016;
Stone et al. 2019), labelled as ‘low’ spectrum L ; the other, with
↵ = �0.8, better reproduces the average trend of the CR ioni-
sation rate estimated from observations in diffuse clouds (Shaw
et al. 2008; Indriolo & McCall 2012; Neufeld & Wolfire 2017,
see also Appendix C) and it is labelled as ‘high’ spectrum H .
For the sake of clarity, in this section we consider only these two

Table 2. Parameters of the interstellar CR electron and proton spectra,
Eq. (2).

Species k C E0 [MeV] ↵ � � ↵
e 2.1⇥ 1018 710 �1.3 3.2
p (model L ) 2.4⇥ 1015 650 0.1 2.7
p (model H ) 2.4⇥ 1015 650 �0.8 2.7

Notes. E is in units of MeV and C is in units of eV�1 s�1 cm�2 sr�1.

values of ↵ for protons, but in the following sections we allow
for the whole range of ↵ values, from �1.2 to 0.1 (see left panel
of Fig. 3). As we show in the following sections, most of the
parameter space is dominated by the ionisation of CR protons
and by the excitation due to secondary electrons. For this reason,
we consider a single parameterisation for primary CR electrons
(see right panel of Fig. 3).

In this work we are interested in the H2 column densi-
ties typical of molecular cloud cores (NH2 . 1023 cm�2), so
we first needed to determine how the spectrum of interstellar
CRs is attenuated as it propagates within a molecular cloud. In
this column density regime, it holds the so-called continuous
slowing-down approximation, according to which a CR propa-
gates along a magnetic field line and, each time it collides with
an H2 molecule, loses a negligible amount of energy compared
to its initial energy. Thus, we assume a free-streaming regime
of propagation of CRs (Padovani et al. 2009), neglecting their
possible resonance scattering off small-scale turbulent fluctua-
tions, which then may lead to diffusive propagation. Therefore,
the spectrum of CR particles of species k propagated at a column
density NH2 , jk(E,NH2 ), can be expressed as a function of the
interstellar CR spectrum at the nominal column density NH2 = 0,

A189, page 5 of 13

Most of the parameter space is dominated by 
the ionisation of CR protons and by the 
excitation of secondary electrons. For this 
reason we consider a single parameterisation 
for primary CR electrons.

protons electrons

PARAMETERISATION OF THE COSMIC-RAY SPECTRUM
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jIS
k (E) = C

Eα

(E + E0)β eV−1 s−1 cm−2 sr−1

M. Padovani et al.: Cosmic rays in molecular clouds probed by H2 rovibrational lines

Fig. 2. Energy loss function for electrons colliding with H2 including the contribution of synchrotron losses (solid black line). Coloured lines show
the different components, and the following references refer to the papers from which the relative cross sections have been adopted: momentum
transfer (‘m.t.’, solid blue; Pinto & Galli 2008); the rotational transition J = 0 ! 2 (solid green line; England et al. 1988); vibrational transitions
v = 0 ! 1 (solid red line; Yoon et al. 2008) and v = 0 ! 2 (dashed red line; Janev et al. 2003); electronic transitions summed over all the triplet
and singlet states (solid orange and magenta lines, respectively; Scarlett et al. 2021a); ionisation (solid cyan line; Kim et al. 2000); bremsstrahlung
(solid grey line; Blumenthal & Gould 1970; Padovani et al. 2018b); and synchrotron (solid yellow line; Schlickeiser 2002; Padovani et al. 2018b).
Dash-dotted brown lines show the Coulomb losses at 10 K for ionisation fractions, xe, equal to 10�7 and 10�8 (Swartz et al. 1971).

factor of ' 3 larger between 0.05 and 0.1 eV due to the different
assumption on temperature and ortho-to-para ratio, and is up to
20 times larger in the range 7�12 eV, mainly due to the updated
X

1⌃+g ! b
3⌃+

u
excitation cross section. For our purposes, the

latter difference is especially important for the derivation of the
spectrum of secondaries below the H2 ionisation threshold.

2.3. Spectrum of secondary electrons

We extend the solution of the balance equation, Eq. (27) in Ivlev
et al. (2021), down to 0.5 eV to compute the secondary electron
spectrum at various H2 column densities. We also checked the
effect of a change in the composition of the medium, including
a fraction of He equal to '20% (see Table A.1 in Padovani et al.
2018b). However, the additional contribution to the spectrum of
secondaries is on average smaller than 3% and we therefore dis-
regard it. For completeness, in Appendix A, we show the energy
loss function for electrons colliding with He atoms and the cross
sections adopted for its derivation.

For the calculation of the secondary electron spectrum, we
assumed the analytic form for the interstellar CR spectrum from
Padovani et al. (2018b),

j
IS
k

(E) = C
E
↵

(E + E0)�
eV�1 s�1 cm�2 sr�1 , (2)

where k = e, p. The adopted values of the parameters C, E0, ↵,
and � are listed in Table 2. For protons we assume two possi-
ble low-energy spectral shapes: one, with ↵ = 0.1, reproduces
the most recent Voyager 1 and 2 data (Cummings et al. 2016;
Stone et al. 2019), labelled as ‘low’ spectrum L ; the other, with
↵ = �0.8, better reproduces the average trend of the CR ioni-
sation rate estimated from observations in diffuse clouds (Shaw
et al. 2008; Indriolo & McCall 2012; Neufeld & Wolfire 2017,
see also Appendix C) and it is labelled as ‘high’ spectrum H .
For the sake of clarity, in this section we consider only these two

Table 2. Parameters of the interstellar CR electron and proton spectra,
Eq. (2).

Species k C E0 [MeV] ↵ � � ↵
e 2.1⇥ 1018 710 �1.3 3.2
p (model L ) 2.4⇥ 1015 650 0.1 2.7
p (model H ) 2.4⇥ 1015 650 �0.8 2.7

Notes. E is in units of MeV and C is in units of eV�1 s�1 cm�2 sr�1.

values of ↵ for protons, but in the following sections we allow
for the whole range of ↵ values, from �1.2 to 0.1 (see left panel
of Fig. 3). As we show in the following sections, most of the
parameter space is dominated by the ionisation of CR protons
and by the excitation due to secondary electrons. For this reason,
we consider a single parameterisation for primary CR electrons
(see right panel of Fig. 3).

In this work we are interested in the H2 column densi-
ties typical of molecular cloud cores (NH2 . 1023 cm�2), so
we first needed to determine how the spectrum of interstellar
CRs is attenuated as it propagates within a molecular cloud. In
this column density regime, it holds the so-called continuous
slowing-down approximation, according to which a CR propa-
gates along a magnetic field line and, each time it collides with
an H2 molecule, loses a negligible amount of energy compared
to its initial energy. Thus, we assume a free-streaming regime
of propagation of CRs (Padovani et al. 2009), neglecting their
possible resonance scattering off small-scale turbulent fluctua-
tions, which then may lead to diffusive propagation. Therefore,
the spectrum of CR particles of species k propagated at a column
density NH2 , jk(E,NH2 ), can be expressed as a function of the
interstellar CR spectrum at the nominal column density NH2 = 0,
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low-energy cosmic-ray induced interstellar chemistry
variations in column densities through the cloud 

variations in cooling line intensities

B. A. L. Gaches et al.: Cosmic-ray attenuation and the carbon cycle

Fig. 9. As in Fig. 7, but for CO.

�c = 1 � 10�16 s�1 �c = 2 � 10�16 s�1 �c = 5 � 10�16 s�1 �c = 1 � 10�15 s�1
Constant CR Models

Attenuated CR Model

[CII]

[CI]

CO 
J = 1-0

Wi (K km s-1)

Fig. 10. Line-of-sight integrated flux for each carbon cycle species for the ⇣(N) model and deviations in the integrated flux from models using
different ⇣c. First column: velocity-integrated emission of the [CII] 158 µm (top), [CI] 609 µm (middle), and CO (1–0) (bottom) emission in units
of (K km s�1). Second to fourth columns: relative emission for the different constant CR ionization rate models with respect to the ⇣(N) model.
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�c = 1 � 10�16 s�1 �c = 2 � 10�16 s�1 �c = 5 � 10�16 s�1 �c = 1 � 10�15 s�1
Constant CR Models

Attenuated CR Model

C+

C

CO

Fig. 6. Carbon cycle column density for the ⇣(N) model and deviations in the calculated column densities for different ⇣c. First column: column
densities of ionized carbon (top), neutral carbon (middle), and carbon monoxide (bottom) for our nonconstant ⇣(N) model. Second to fourth
columns: relative difference (see Eq. (7)) in column density for a constant CRIR with respect to the ⇣(N) model for each of the aforementioned
species.

flipped for the ⇣c = 2 ⇥ 10�16 and 5 ⇥ 10�16 s�1 models. At high
densities, the CO distributions are effectively identical.

Figures 7–9 show the x(C+) � n, x(C) � n, and x(CO) � n
phase spaces, for our various simulations with the bin averages
as red lines. The last panel on the bottom right of each figure
shows the linear-relative error in the average abundance profiles
for a specific constant CRIR model compared to the ⇣(N) model.

Looking at Figs. 7–9, we can identify several general trends.
First, for densities nH . 100 cm�3, the abundance of C+ is
insensitive to the ⇣. This is because gas at these densities is pref-
erentially located near the cloud boundary (following Eq. (5),
this gas has AVe↵  0.8, on average) where carbon photoion-
ization is efficient and dominates the production of C+5. In this
regime, photoionization keeps the carbon predominantly in ion-
ized form, with x(C+) ' AC ⇡ 10�4, where AC is the elemental
carbon abundance.

Then, as we move to higher densities, we sampled regions at
higher AV, at which point dust absorption becomes important,
significantly reducing the efficiency of carbon photoionization.
At nH � 100 cm�3, CR-driven reactions dominate over pho-
toionization and the C+ abundance then depends on ⇣. In this
regime, as the CRIR increases, the abundances of both C and
C+ increase, at the expense of CO. This is because CRs (1)
ionize He resulting in the formation of He+, and (2) excite H2
molecules generating FUV radiation inside the cloud interior
(Sternberg et al. 1987; Gredel et al. 1989; Heays et al. 2014;

5 The ionization potential of C is h⌫ = 11.3 eV. Thus, even in regions
where the hydrogen is predominantly neutral (i.e., in the bulk of the
ISM), carbon may be readily photoionized by photons with energies in
the range h⌫ = (11.3�13.6) eV.

Bialy 2020). Both the He+ ions and the FUV CR produced an
FUV radiation result in the destruction of CO molecules and
the formation of C and C+. Similarly, for very high CRIRs, the
induced FUV radiation can become an important source of C+
through the photoionization of C. Thus, the abundances of C
and C+ generally increase with ⇣. For a thorough discussion of
these chemical reactions, readers can refer to Sect. 2.3 in Bialy
& Sternberg (2015), and also their Sect. 5 for analytic scaling
relations (in particular, their Eq. (45)).

Indeed, looking at Figs. 7–8, we see that within this high-
density regime, the C and C+ abundances are always higher for
the two models with high CRIRs (⇣c = (5, 10)⇥ 10�16 s�1), com-
pared to the ⇣(N) model (at these densities, the ⇣(N) model gives
a CRIR that is typically below 5 ⇥ 10�16 s�1; see Fig. 4).

Looking at the bottom-right panels of Figs. 7–8, we see
that as the density increases, the relative abundances of C
and C+ (in each of the ⇣c models, relative to the ⇣(N) model)
increase with increasing ⇣c. At sufficiently high densities, even
the models with ⇣c = 2 ⇥ 10�16 s�1 and ⇣c = 10�16 s�1 exhibit
higher C and C+ abundances, compared to the ⇣(N) model. This
is because while the CRIR remains constant in the ⇣c models, it
decreases with nH in the ⇣(N) model, as seen in Fig. 4 (see also
Eq. (6)). Specifically, at the points nH ⇡ 5 ⇥ 103 and 105 cm�3,
the CRIR in the ⇣(N) model falls below the values of the two
constant CRIR models, ⇣c = 2 ⇥ 10�16 s�1 and ⇣c = 10�16 s�1,
respectively. These are the points where there is a transition
from underproduction to overproduction of C and C+ in the
⇣c = (1, 2) ⇥ 10�16 s�1 models (compared to the ⇣(N) model),
that is, the curves in the bottom-right panels cross zero.

Looking at Fig. 9, we see that while the region where the CO
abundance is sensitive to ⇣ is limited to low and intermediate
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Figure 5. Left: The energy fraction for fast, slow, and Alfv ́enic mode as a function of M S . All simulations have M A ≈ 0.5. Right: The volume filling factor 
for fast, slow, and Alfv ́enic mode as a function of M A . All simulations have M S ≈ 6.0. Circular symbol represents a resolution of 792 3 , while inverted triangle 
symbol represents the cases of 512 3 . 

Figure 6. Left: The mean free path λ! in the unit of cube size L as a function of M S . All simulations have M A ≈ 0.5. Right: The mean free path λ! in the unit 
of cube size L as a function of M A . All simulations have M S ≈ 6.0. Circular symbol represents a resolution of 792 3 , while inverted triangle symbol represents 
512 3 . 

Figure 7. The evolution of averaged ⟨ µ⟩ over all particles, i.e. the cosine of 
pitch angle with respect to the CRs’ gyro periods. 

⟨ µ⟩ monotonically decreases. We can also see that the decrease of 
⟨ µ⟩ is slower for low M A cases, showing that the increased M A leads 
to enhanced efficiency in particle scattering. It can be understood 
as that the particles’ gyroresonant scattering at a smaller M A is less 
efficient so that the corresponding mean free path is larger. Indeed, 
we find the mean free path parallel to the local magnetic field ⟨ λ! ⟩ are 
12.24 L inj , 3.14 L inj , 1.28 L inj , and 0.92 L inj for the cases of M A = 0.34, 
0.56, 0.78, and 0.87, respectively. Here, L inj = 0.5 L is the injection 
scale. 
5.3 Perpendicular superdiffusion 
5.3.1 Subsonic turbulence 
To test the perpendicular superdiffusion, we simultaneously inject 50 
beams of test particles randomly in the simulation cube. Each beam 
contains 20 particles. The spatial separations between particles in 
each beam are L /100 pixels. Like the setting abo v e, all the particles 
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FIGURE 1. Simple cartoon illustrating the interaction of a particle (trajectory in blue) with a
localized bend of the magnetic field line (in black), for three different cases: (a) small-scale mode
l ≪ rg; (b) near-resonant mode l ∼ rg and κlrg ! 1; (c) large-scale bend l ≫ rg and κlrg ≪ 1.
In (a), the particle crosses the perturbation ballistically while, in (c), the particle follows the
bend adiabatically; in both cases, the magnetic moment is approximately conserved, |"M̂| ≡
|M(t)/M(0) − 1| ≪ 1; in (b), the interaction gives rise to substantial non-adiabatic evolution of
M, with |"M̂| ∼ O(1).

gives a behaviour illustrated in figure 1. We emphasize that this figure is a sketch, presented
for illustrative purposes only. The form and the shape of the bend may vary, but to the
extent that the physics is captured by the two scales κ−1

l and l, it captures the generic
behaviour. Namely, for l/rg ≪ 1 (case a), the particle crosses the perturbation ballistically,
without suffering significant deflection, while in the opposite limit l ≫ rg (case c), the
particle follows the field line adiabatically. In both cases, the normalized magnetic moment
M̂(t) ≡ M(t)/M(0) remains approximately constant. On the contrary, when l ∼ rg and
κlrg ! 1, the interaction becomes non-adiabatic and |"M̂| ∼ O(1).

The variation of the magnetic moment of a particle that crosses a region of high
curvature κ , independently of the evolution of magnetic field lines on scales ≫ 1/κ , is
captured by the analysis of Birmingham (1984) in the limit rg < l. The strength of the
interaction depends critically on the parameter max(κrg), because the magnetic moment
changes by an amount

"M
M

≃ α cos Φ exp

[

− β

max
(
κrg

)
]

, (2.4)

with α, β coefficients determined in (21) of that reference, and Φ the particle gyrophase
at the location where B finds its minimum. The interaction thus becomes non-adiabatic
whenever max(κrg) ! 0.1 and it can either reduce or increase the magnetic moment,
depending on the sign of the cosine factor. The exact value of the curvature does not
play a significant role provided it exceeds that threshold.

As will be shown in § 3, regions with curvature κll ! 1 are rare, all the more so at small
scales l ≪ ℓc, since ⟨κll⟩ ∝ l2/3 (2.3). Ignoring the statistics beyond the root-mean-square
(r.m.s.) ⟨κl⟩ as one would do in a quasilinear context, one would conclude that κlrg "
(l/rg)

−1/3(rg/ℓc)
2/3 ≪ 1 for all l ! rg, hence that curvature is everywhere weak and

negligible. However, once we consider the full extent of the statistics of κl (§ 3), we find
a non-vanishing probability of observing κlrg ! 1, with a maximum for l ∼ rg. Regarding
small scales l ≪ rg, their contribution can be ignored, because the gyromotion of the
particle leads to an effective coarse graining on scales rg.

To model the influence of high-curvature regions, we consider in the following a
simplified version of (2.4), namely "M/M = ±1 for particles such that max(κlrg) ! 1,
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where d is the escape distance and 𝜅 is the diffusion scalar. 
Thus, the cosmic-ray density is given by the ratio of the 
source spectrum and the diffusion coefficient,

Assuming diffusive shock acceleration, one arrives at a 
power-law spectrum at injection, i.e. S(E) ∝ E−𝛾s . The dif-
fusion coefficient in quasi-linear theory (QLT) with a wave 
spectrum that follows a power law also becomes a power 
law (see e.g. [18]), 𝜅i(E) ∝ E𝛾i with i = ∥, ⟂ . Thus, in case 
of diffusion-dominance, the energy spectrum of cosmic 
rays after propagation is steepened, i.e. n(E) ∝ E−𝛾s−𝛾i [23]. 
These arguments are based on QLT, in which only linear 

(5)−
n

𝜏dif f
≈ ∇(𝜅̂∇n),

(6)n ∝
S

𝜅
.

terms in the distortions of the electromagnetic fields and 
particle population with respect to the undisturbed fields 
are being considered to simplify the kinetic equations and 
to facilitate their analytical treatment. In particular, if we 
assume isotropic turbulence, we obtain an isotropic wave-
vector spectrum of the form G(k) ∝ E−𝛽 , with 𝛽 = 5∕3 
[24] for Kolmogorov-like turbulence and 𝛽 = 3∕2 for the 
Kraichnan type [25]. In QLT, this leads to a parallel diffu-
sion coefficient 𝜅∥ ∝ E2−𝛽 [26]. While both spectral indi-
ces describe the observed solar wind turbulence inertial 
range within the uncertainties [27], we only consider Kol-
mogorov turbulence in the following. Based on this QLT 
prediction, there is an expected difference of about 0.2 
in the index of the energy dependence of the diffusion 
coefficients between the two turbulence models, which 
results in an underlying uncertainty in our results due to 
the uncertainties in the turbulence model.

Fig. 1  Schematic picture of a charged particle traveling through 
different magnetic field strengths. The magnetic field strength 
increases starting from the upper left panel and proceeding clock-
wise, resulting in an accompanying decrease of the particle gyrora-
dius. The ratio of gyroradius and correlation length determines the 
predominant diffusion regime of the particle. The possible regimes 
are the quasi-ballistic regime (QBR), the resonant-scattering regime 
(RSR), the mirror regime (MR), and the non-resonant-scatter regime 
(NRSR) [12]. Equivalently, the different regimes can also be repre-
sented schematically by changing particle energy between the 

boxes at constant magnetic field strengths. In each regime, differ-
ent processes dominate diffusion, such as FLRW [13] and the trans-
port across magnetic field lines [14]. The condition for diffusion 
in QBR follows from [15] and is generalized here for the inclusion 
of background fields. n stands for the number of boxes with side 
length lc . The box and thus the scale that would be necessary to 
allow diffusion exceeds the width of the region shown in the panel, 
as nlc ≳ rg∕lc ≫ rg . The mean-free path is approximately given by 
nlc , for the smallest n which satisfies the condition for diffusion
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(NRSR) [12]. Equivalently, the different regimes can also be repre-
sented schematically by changing particle energy between the 

boxes at constant magnetic field strengths. In each regime, differ-
ent processes dominate diffusion, such as FLRW [13] and the trans-
port across magnetic field lines [14]. The condition for diffusion 
in QBR follows from [15] and is generalized here for the inclusion 
of background fields. n stands for the number of boxes with side 
length lc . The box and thus the scale that would be necessary to 
allow diffusion exceeds the width of the region shown in the panel, 
as nlc ≳ rg∕lc ≫ rg . The mean-free path is approximately given by 
nlc , for the smallest n which satisfies the condition for diffusion

Vo
l.:(
01
23
45
67
89
)

SN
 A

pp
lie

d 
Sc

ie
nc

es
   

   
   

   
(2

02
2)

 4
:1

5 
 

|  h
tt

ps
://

do
i.o

rg
/1

0.
10

07
/s

42
45

2-
02

1-
04

89
1-

z 
Re

se
ar

ch
 A

rt
ic

le

w
he

re
 d

 is
 th

e 
es

ca
pe

 d
ist

an
ce

 a
nd

 𝜅
 is

 th
e 

di
ffu

sio
n 

sc
al

ar
. 

Th
us

, t
he

 c
os

m
ic

-r
ay

 d
en

si
ty

 is
 g

iv
en

 b
y 

th
e 

ra
tio

 o
f t

he
 

so
ur

ce
 sp

ec
tr

um
 a

nd
 th

e 
di

ffu
si

on
 c

oe
ffi

ci
en

t,

As
su

m
in

g 
di

ffu
si

ve
 s

ho
ck

 a
cc

el
er

at
io

n,
 o

ne
 a

rr
iv

es
 a

t 
a 

po
w

er
-la

w
 s

pe
ct

ru
m

 a
t i

nj
ec

tio
n,

 i.
e.

 S
(E
)
∝
E
−
𝛾 s

 . T
he

 d
if-

fu
si

on
 c

oe
ffi

ci
en

t i
n 

qu
as

i-l
in

ea
r t

he
or

y 
(Q

LT
) w

ith
 a

 w
av

e 
sp

ec
tr

um
 th

at
 fo

llo
w

s a
 p

ow
er

 la
w

 a
ls

o 
be

co
m

es
 a

 p
ow

er
 

la
w

 (s
ee

 e
.g

. [
18

]),
 𝜅

i(
E
)
∝
E
𝛾 i

 w
ith

 i
=
∥
,
⟂

 . T
hu

s, 
in

 c
as

e 
of

 d
iff

us
io

n-
do

m
in

an
ce

, t
he

 e
ne

rg
y 

sp
ec

tr
um

 o
f c

os
m

ic
 

ra
ys

 a
ft

er
 p

ro
pa

ga
tio

n 
is

 st
ee

pe
ne

d,
 i.

e.
 n
(E
)
∝
E
−
𝛾 s
−
𝛾 i
 [2

3]
. 

Th
es

e 
ar

gu
m

en
ts

 a
re

 b
as

ed
 o

n 
Q

LT
, i

n 
w

hi
ch

 o
nl

y 
lin

ea
r 

(5
)

−
n

𝜏 d
if
f

≈
∇
(𝜅
∇
n
),

(6
)

n
∝

S 𝜅
.

te
rm

s i
n 

th
e 

di
st

or
tio

ns
 o

f t
he

 e
le

ct
ro

m
ag

ne
tic

 fi
el

ds
 a

nd
 

pa
rt

ic
le

 p
op

ul
at

io
n 

w
ith

 re
sp

ec
t t

o 
th

e 
un

di
st

ur
be

d 
fie

ld
s 

ar
e 

be
in

g 
co

ns
id

er
ed

 to
 si

m
pl

ify
 th

e 
ki

ne
tic

 e
qu

at
io

ns
 a

nd
 

to
 fa

ci
lit

at
e 

th
ei

r a
na

ly
tic

al
 tr

ea
tm

en
t. 

In
 p

ar
tic

ul
ar

, i
f w

e 
as

su
m

e 
iso

tr
op

ic
 tu

rb
ul

en
ce

, w
e 

ob
ta

in
 a

n 
iso

tr
op

ic
 w

av
e-

ve
ct

or
 s

pe
ct

ru
m

 o
f 

th
e 

fo
rm

 G
(k
)
∝
E
−
𝛽
 , 

w
ith

 𝛽
=
5
∕
3 

[2
4]

 fo
r K

ol
m

og
or

ov
-li

ke
 tu

rb
ul

en
ce

 a
nd

 𝛽
=
3
∕
2 

fo
r t

he
 

Kr
ai

ch
na

n 
ty

pe
 [2

5]
. I

n 
Q

LT
, t

hi
s 

le
ad

s 
to

 a
 p

ar
al

le
l d

iff
u-

si
on

 c
oe

ffi
ci

en
t 𝜅

∥
∝
E
2
−
𝛽
 [2

6]
. W

hi
le

 b
ot

h 
sp

ec
tr

al
 in

di
-

ce
s 

de
sc

rib
e 

th
e 

ob
se

rv
ed

 s
ol

ar
 w

in
d 

tu
rb

ul
en

ce
 in

er
tia

l 
ra

ng
e 

w
ith

in
 th

e 
un

ce
rt

ai
nt

ie
s [

27
], 

w
e 

on
ly

 c
on

si
de

r K
ol

-
m

og
or

ov
 tu

rb
ul

en
ce

 in
 th

e 
fo

llo
w

in
g.

 B
as

ed
 o

n 
th

is
 Q

LT
 

pr
ed

ic
tio

n,
 th

er
e 

is
 a

n 
ex

pe
ct

ed
 d

iff
er

en
ce

 o
f a

bo
ut

 0
.2

 
in

 th
e 

in
de

x 
of

 th
e 

en
er

gy
 d

ep
en

de
nc

e 
of

 th
e 

di
ffu

si
on

 
co

effi
ci

en
ts

 b
et

w
ee

n 
th

e 
tw

o 
tu

rb
ul

en
ce

 m
od

el
s, 

w
hi

ch
 

re
su

lts
 in

 a
n 

un
de

rly
in

g 
un

ce
rt

ai
nt

y 
in

 o
ur

 re
su

lts
 d

ue
 to

 
th

e 
un

ce
rt

ai
nt

ie
s i

n 
th

e 
tu

rb
ul

en
ce

 m
od

el
.

Fi
g.

 1
  

Sc
he

m
at

ic
 p

ic
tu

re
 o

f 
a 

ch
ar

ge
d 

pa
rt

ic
le

 t
ra

ve
lin

g 
th

ro
ug

h 
di

ffe
re

nt
 m

ag
ne

tic
 fi

el
d 

st
re

ng
th

s. 
Th

e 
m

ag
ne

tic
 fi

el
d 

st
re

ng
th

 
in

cr
ea

se
s 

st
ar

tin
g 

fro
m

 th
e 

up
pe

r l
ef

t p
an

el
 a

nd
 p

ro
ce

ed
in

g 
cl

oc
k-

w
ise

, r
es

ul
tin

g 
in

 a
n 

ac
co

m
pa

ny
in

g 
de

cr
ea

se
 o

f t
he

 p
ar

tic
le

 g
yr

or
a-

di
us

. T
he

 ra
tio

 o
f g

yr
or

ad
iu

s 
an

d 
co

rr
el

at
io

n 
le

ng
th

 d
et

er
m

in
es

 th
e 

pr
ed

om
in

an
t d

iff
us

io
n 

re
gi

m
e 

of
 th

e 
pa

rt
ic

le
. T

he
 p

os
sib

le
 re

gi
m

es
 

ar
e 

th
e 

qu
as

i-b
al

lis
tic

 re
gi

m
e 

(Q
BR

), 
th

e 
re

so
na

nt
-s

ca
tt

er
in

g 
re

gi
m

e 
(R

SR
), 

th
e 

m
irr

or
 re

gi
m

e 
(M

R)
, a

nd
 th

e 
no

n-
re

so
na

nt
-s

ca
tt

er
 re

gi
m

e 
(N

RS
R)

 [1
2]

. E
qu

iv
al

en
tly

, t
he

 d
iff

er
en

t 
re

gi
m

es
 c

an
 a

lso
 b

e 
re

pr
e-

se
nt

ed
 s

ch
em

at
ic

al
ly

 b
y 

ch
an

gi
ng

 p
ar

tic
le

 e
ne

rg
y 

be
tw

ee
n 

th
e 

bo
xe

s 
at

 c
on

st
an

t 
m

ag
ne

tic
 fi

el
d 

st
re

ng
th

s. 
In

 e
ac

h 
re

gi
m

e,
 d

iff
er

-
en

t p
ro

ce
ss

es
 d

om
in

at
e 

di
ffu

sio
n,

 s
uc

h 
as

 F
LR

W
 [1

3]
 a

nd
 th

e 
tr

an
s-

po
rt

 a
cr

os
s 

m
ag

ne
tic

 fi
el

d 
lin

es
 [

14
]. 

Th
e 

co
nd

iti
on

 f
or

 d
iff

us
io

n 
in

 Q
BR

 fo
llo

w
s 

fro
m

 [1
5]

 a
nd

 is
 g

en
er

al
iz

ed
 h

er
e 

fo
r 

th
e 

in
cl

us
io

n 
of

 b
ac

kg
ro

un
d 

fie
ld

s. 
n 

st
an

ds
 fo

r 
th

e 
nu

m
be

r 
of

 b
ox

es
 w

ith
 s

id
e 

le
ng

th
 l c

 . T
he

 b
ox

 a
nd

 t
hu

s 
th

e 
sc

al
e 

th
at

 w
ou

ld
 b

e 
ne

ce
ss

ar
y 

to
 

al
lo

w
 d

iff
us

io
n 

ex
ce

ed
s t

he
 w

id
th

 o
f t

he
 re

gi
on

 sh
ow

n 
in

 th
e 

pa
ne

l, 
as

 n
l c
≳
r g
∕
l c
≫

r g
 . T

he
 m

ea
n-

fre
e 

pa
th

 is
 a

pp
ro

xi
m

at
el

y 
gi

ve
n 

by
 

n
l c

 , f
or

 th
e 

sm
al

le
st

 n
 w

hi
ch

 sa
tis

fie
s t

he
 c

on
di

tio
n 

fo
r d

iff
us

io
n

Rgyr < lcoherent B

Rgyr ≲ λB

mirroring

strong B or low E
non-adiabiatic 
kicks in kinks

gyro-resonant 
scattering

B line  
random walk

κ∥ diffusion

Rgyr ≫ lcoherent Bquasi-ballistic

B line  
random walk

weak B or large E

Rgyr ≈ ρcurv B

ρcurv B

κ⊥ diffusion

Rgyr ≲ lcoherent B

B0
pitch angle 

μ = cos θpitch =
⃗p ⋅ ⃗B

pB =
v∥

v

v⊥ = v 1 − μ2

θ

Rgyr = 1 . 2 10−6 pc ( B
1 nT )

−1

( Ekin
10 GeV )

Rgyr = 0 . 25 au ( B
1 nT )

−1

( Ekin
10 GeV )



gyro-resonant pitch-angle diffusion
gyro-resonant scattering on all MHD waves, in particular Alfvén waves,  

mediated by the Lorentz force 
gyro-resonance when the Doppler-shifted rotation rate  of a circularly polarised wave is a multiple  

of the CR gyro frequency.   

=> interaction with the rotating of the Doppler-shifted wave rotating in the same direction  
and at the same frequency as the CR rotation in its rest frame. 

n = 1 for Alfvén waves propagating // B0            hence     

implying a random “walk” in   

described by diffusion with scattering deviation     

and scattering frequency 

diffusion mean free path 

diffusion coefficient

ωr

⃗E

ωr = kvA k∥(v∥ − vA) = ± Ωgyr

μ =
v∥

v
|δθ | ∼ δθB ∼ δB/B

νsc ≈ ⟨δθ2⟩
δt

∼ νgyr ( δB
B0 )

2

λsc = βc
νsc

∝ Rgyr ( B0
δB )

2

B0 = Blocal

δθB ∼ δB
B0 v2

A = B2

μ0 ρion

δθB

Introduction
Interstellar medium

Simulating galaxy formation

Cosmic rays
ISM outflows
Cosmic ray transport

Interactions of CRs and magnetic fields

B

sketch: Jacob

gyro resonance: ! � kkvk = n⌦

Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency

CRs scatter on magnetic fields ! isotropization of CR momenta

Christoph Pfrommer Cosmic rays and the ISM

F v⟂

δB

κ∥ = 1
3 λscβc = 1

3
β2c2

νsc
∝ Rgyr ( B0

δB )
2

no  in the wave frame 
 
 

and vice versa

⃗E
⇒ (v∥ − vA)2 + v2

⊥ = cte
v∥ − vA ↓ ⇒ v⊥ ↑ ⇒ θpitch ↑ ⇒ μ ↓

k∥v∥ − ωr = ± n Ωgyr

v// < vA ⇒ v// ↑ v⟂↓ μ ↑ θ ↓

rotating ⃗E

v// > vA ⇒ v// ↓ v⟂↑ μ ↓ θ ↑ λr ≈ Rgyr

B0 = Blocal
pitch angle 

μ = cos θpitch = ⃗p ⋅ ⃗B
pB

=
v∥

v
v⊥ = v 1 − μ2

θ

κ∥ = ∫
+1

−1

v2(1 − μ2)
4νsc

dμ



transit-time damping (TTD) = transit-time surfing

surfing the wavefront of oblique compressible fast and slow wave modes 
 =phase velocity of the compression wave.  

intersection point M  between the wavefront and the mean local B moves at speed   

surf if CR moves at   
✦ small range of small  given the large  of CRs 

n = 0 mode 

transit time for the CR to cross the wave:      equal to the wave period T  

CR gains/looses  from the wave  field 
stochastic gain because head-on interactions between CR and wave are more frequent than head-tail interactions (2nd order Fermi acceleration) 
hence wave damping 

no specific resonant scale : turbulence over all scales  contributes to scattering. 
TTD unable to scatter CRs at small pitch angles 
=> TTD contributes to scattering, but only if another process has distributed CRs to 

vϕ

vM = dl
dt

=
vϕ

sin α
v∥ = vM

α v∥

n = 0 ⇒ k∥v∥ = ωr ⇒ τ =
λ∥

v∥
= 2π

k∥v∥
= 2π

ωr
= T

p∥ ⃗E

l > Rgyr

θ ≳ 60∘

v ϕ
dt

● ●
M α

v ϕ

dl B

Schlickeiser 2002 
Lazarian, Xu, Hu 2023



perpendicular diffusion in external MHD turbulence
maximum  cm2/s from pitch-angle scattering => perpendicular diffusion due to B line diffusion 
B line perpendicular diffusion  

normal diffusion at large scales  (for   and  ) 
super diffusion in the turbulence inertial range 

if  CR scattering mean free path along B̀    (as for GeV-TeV CRs in the ISM) :    

if  :    

κ⊥ = Rgyrc ≈ 1021

s > lA = LinjM−3
A  for MA > 1 s > Linj  for MA < 1

λ∥ < Linj ⟨y2
cr⊥⟩ ∝ t3/2

λ∥ > Linj ⟨y2
cr⊥⟩ ∝ t3

κ⊥ ∝ M4
A

Perpendicular superdiffusion (< L) and diffusion (> L) 

magnetic fields CR particles 

Beresnyak 2013 Xu & Yan 2013
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Perpendicular superdiffusion (< L) and diffusion (> L) 
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CRs in respect to the local and global system of reference can differ. 
This was confirmed by a recent numerical study in Maiti et al. ( 2021 ). 
Anticipating the approximate nature of the scaling employed, we do 
not attempt to present the exact numerical factor for the dependence. 

In super-Alfv ́enic condition, turbulence is hydro-like in the range 
of scales [ l A , L inj ] because the dynamics of magnetic fields is 
dominated by turbulent motions for which the magnetic back reaction 
is ne gligible. Abo v e, l A = L inj M −3 

A , is the scale at which the turbulent 
velocity equals the Alfv ́en speed. 

The role of magnetic field becomes more important at scales 
smaller than l A but larger than the dissipation scale (Lazarian 2006 ). 
In this scale range, turbulent eddy gets elongated in the direction 
of the local magnetic field in a way similar to the sub-Alfv ́enic 
turbulence and l A plays the role of injection scale: v l ∝ v A ( l ⊥ / l A ) 1/3 . 
Consequently, the anisotropy relation in ‘critical balance’ is 
l ∥ = L inj ( l ⊥ 

L inj 
) 2 

3 
M −1 

A , M A ≥ 1 (11) 
and we have 
⟨ z 2 ⟩ ≈ l 2 ⊥ = x 3 

27 L inj M 3 A ∝ t 3 
27 L inj M 3 A , M A ≥ 1 . (12) 

The abo v e relations can be obtained formally considering that in 
the case of super-Alfv ́enic turbulence the injection happens scale is 
l A rather than L inj . Therefore, on the scales from the dissipation scale 
to l A one can use the relations and all what we discussed abo v e in 
terms of CR propagation for sub-Alfv ́enic turbulence is applicable 
with this change. 

It is important for the CR propagation that the perturbations of 
magnetic fields in a turbulent medium can scatter and isotropize 
CRs. This is the source of the generally accepted parallel to magnetic 
field diffusion. This is not the only process that go v erns CR parallel 
dif fusion, ho we ver. A ne w process of mirror diffusion was introduced 
in LX21 . Unlike the scattering, this diffusion does not cause the 
diffusion in CR pitch angles. 2 Instead CRs bounce from the magnetic 
mirrors created by magnetic compression. While the earlier studies 
(see Kulsrud & Pearce 1969 ) assumed that the magnetic mirrors will 
induce trapping of CRs, LX21 demonstrated that due to magnetic 
field wondering that we discussed abo v e, the CRs were not trapped, 
but every time bounce from a new mirror and, as a result, diffuse 
parallel to magnetic field. This new type of diffusion, i.e. the ‘mirror 
diffusion’ is particularly important for the CRs propagation of new 
CR sources (Xu 2021 ). Ho we ver, for the sake of simplicity, within 
this study, we do not distinguish between the two types of parallel to 
magnetic field diffusion. 
2.3 Compressible MHD turbulence 
Compressible turbulence is a non-linear phenomenon, which nev- 
ertheless allows an approximate representation as a composition 
of three cascades (see Beresnyak & Lazarian 2019 , and references 
therein). The Alfv ́en cascade imposes its properties on slow mode 
turbulence cascade, while the fast mode cascade evolves mostly 
on its own (Goldreich & Sridhar 1995 ; Lithwick & Goldreich 
2001 ; Cho et al. 2002 ; Cho & Lazarian 2003 ). The exchange 
of energy between different modes was pro v en numerically to be 
insignificant (Cho & Lazarian 2002 ) and this substantially simplifies 
2 LX21 pointed out that the dynamics of the pitch angle similar to the pitch 
angle dynamics for the Transient Time Damping acceleration discussed e.g. 
in Shalchi & Schlickeiser ( 2006 ). 

Figure 2. A visualization of CRs’ superdiffusion. 50 CRs’ trajectories are 
shown with M S = 0.62 and M A = 0.56. The Larmor radius r L is set as 1/100 
of cube size L . The spatial separation between CRs is one pixel and initial 
pitch angle is 0 degree. 
the practical treatment of MHD turbulence. Lazarian & Vishniac 
( 1999 ) showed that Alfv ́enic turbulence induces magnetic field 
wandering. Therefore, the CRs’ superdiffusion is dominated by 
Alfv ́enic modes of turbulence. Fig. 2 presents an example of CRs’ 
superdiffusion using the method explained in Section 4 . Initially, 
the spatial separation between CRs is one pixel in the direction 
perpendicular to the mean magnetic field. The separation, ho we ver, 
e xplosiv ely grows up when CRs travel along the magnetic field. 
Ho we ver, fast modes dominate the scattering, which can affect 
the scaling of superdiffusion (see equation 6 ). Therefore, we will 
investigate superdiffusion in compressible MHD turbulence. 
3  M H D  T U R BU L E N C E  SIMULATIONS  
The 3D compressible MHD turbulence simulations are generated 
through zeus-mp/3D code (Hayes et al. 2006 ). By considering 
isothermal single fluid and operator-split MHD conditions in the 
Eulerian frame, we solve the ideal MHD equations in a periodic 
box: 
∂ ρ/∂t + ∇ · ( ρv v v ) = 0 
∂ ( ρv v v ) /∂t + ∇ · [ρv v v v v v + ( P + B 2 

8 π ) I I I − B B B B B B 
4 π

]
= f f f 

∂ B B B /∂t − ∇ × ( v v v × B B B ) = 0 
∇ · B B B = 0 , (13) 

where f f f is a random large-scale driving force, ρ is gas density, v v v 
is velocity, and B B B is the magnetic field. We consider the magnetic 
field and density field in the form of B = B 0 + δb and ρ = ρ0 + 
δρ, where B 0 and ρ0 are the uniform background field. δb and δρ
stand for fluctuations. Initially, B 0 is assumed to be parallel to the 
x -axis. The gas pressure is given by the isothermal equation of state 
P = c 2 s ρ0 , where c s is the sound speed. 

We solenoidally (i.e. divergence-free) drive turbulence in Fourier 
space by applying a stochastic forcing to the momentum equation. 
In the absence of self-gravity, the forcing is constructed so that 
kinetic energy is continuously injected on scales that correspond 
to wavenumbers k = 2. The driving amplitude is largest at k = 2 and 
drops to zero on either side of k = 2, as shown in Fig. 3 . We run 
the simulation until turbulence is fully developed and the spectrum 
follows a Kolmogorov scaling. The simulation is grid into 792 3 or 
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fast gyro-resonant diffusion vs. slow mirroring diffusion
small net μ change if CR remains along the same line bundle 
but super-diffusion of B lines during the CR propagation => CRs follow ≠ B lines after bouncing back 

loss cone => reflected CRs only for large pitch angles        

gyro-resonant scattering at low pitch angles populates the large-pitch angle domain for mirror diffusion :  
mirror scattering for only small fraction of the CR population =>  the average  of the CR population close to the gyro-resonant one

sin2 θ > B
B + δB

⇒ μ < μcrit(B) ⇒ μ < μcrit(ECR)
μcrit(Ecr)

κ∥

scattering diffusion

Lazarian, Xu, & Hu Cosmic rays in MHD turbulence

B0 + �b, its perpendicular momentum p? increases. It implies that with pitch angle cosine µ

µ < µlc =

r
�b

B0 + �b
, (24)

the particle can be reflected at the mirror point, while particles with larger µ’s, i.e., smaller pitch angles,
can escape from the mirror. Earlier studies considered that the magnetic mirrors trap the CRs until the
gyroresonance scattering allows the particles to escape the mirrors (Cesarsky and Kulsrud, 1973). CRs with
µ < µlc were considered “trapped” in magnetic bottles and thus unable to diffuse. However, in Lazarian
and Xu (2021) it was shown that this is not true in realistic MHD turbulence. During the perpendicular
superdiffusion, CRs cannot trace back the same magnetic field line. Instead, after each mirroring interaction,
they always encounter a different mirror, leading to their diffusion along magnetic field lines (see Fig. 4).

Figure 4. Left: Illustration of mirror diffusion. Thin lines represent turbulent magnetic field lines. Thick
lines represent the trajectories of two CR particles whose initial separation is small. Right: Parallel
diffusion coefficients Dk,f,b of mirror diffusion and Dk,f,nb of scattering diffusion induced by fast modes.
From LX21.

For mirroring interaction with fast modes, the corresponding parallel diffusion coefficient is (LX21)

Dk,b(µ) =

8
<

:
vµk�1 = vL

⇣�Bf

B0

⌘�4
µ9, µmin,f < µ < µc,

vµrL, µ < µmin,f, (25a)

where

µc ⇡

14

⇡

�B2
f

B2
0

⇣ v

L⌦

⌘ 1
2

� 2
11

(26)

is the critical µ at the balance between pitch-angle scattering and mirroring,

µmin,f =

s
�Bf

B0

⇣rL
L

⌘ 1
8
, (27)
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CR diffusion in tangled magnetic fields
in super-Alfvénic turbulence, gas turbulent motions drag B lines in complex twists 

free gyration around B lines induces an effective diffusion in space  
mean free path = coherence length of B 

 
slows down CRs in addition to the gyro-resonant scattering 

important in  
low-B environments  
molecular clouds 
starburst environments

lmfp = lA = LinjM−3
A

Soler & Hennebelle 2017

M2
A =

1
2 ρHδv2

H,rms

B2/(2μ0)
=

ekin,turb
eB
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MA > 1

Krumholz+ 2020 
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which waves  
scatter CRs ?



damping of MHD waves
Landau damping because the wave  field tends to synchronise the ions 

more accelerated than decelerated ions => wave damping 

non-linear Landau damping by ions in the beat wave formed by 2 almost-co-propagating waves  
mirror force acceleration for  

turbulent damping : shearing of two counter-propagating MHD eddies 
efficient if crossing time ≈ turnover time 
induces the energy cascade to smaller scale 
depends on  and scale 

ion-neutral damping  
ion-neutral momentum transfer in collisions, but also neutral viscosity 
dominant in neutral gas phases (WNM, CNM, DNM, H2)

⃗E

vi ≈ vbeat

MA vA

vi < vA ⇒ ⃗E  acceleration

vi > vA ⇒ ⃗E  deceleration

v

f(v)

Goldreich & Sridhar 1995

Landau 1946

→ acceleration scales with gradient of magnetic energy 
density 

… unlike quasi-linear theory: ∝magnetic energy density

→ in each site, particle gains or loses energy regularly, 
according to sign of gradient 

… unlike Fermi: head-on vs tail-on

→ acceleration sites occupy only a small filling fraction of the 
total volume

⇒ direct connection to intermittency

… unlike quasi-linear theory: homogeneous statistics

© V. Bresci, L. Gremillet, M. L.: 2D PIC, driven turb., e+e-,  10 0002, δB/B ~ 3, σ ~ 1

∼3-5 x thermal

∼20-40 x thermal

Non-resonant Fermi-type acceleration in velocity gradients: distinctive features

Bresci, Gremillet, Lemoine



scattering on pre-existing MHD turbulence
inefficient scattering on anisotropic Alfvén modes 

small scattering efficiency preserved at small scales 
from the isotropic fast modes  
(but ≤ 20% of MHD turbulence energy, if not damped) 
small role of slow modes 

ion-neutral damping for scales such that  
✦ Alfvén modes  
✦ slow modes  
✦ fast modes  

very fast diffusion in the WNM  
for all  Galactic CRs 

slow diffusion in H2 > TeV 

2nd-order Fermi (re)acceleration

Ek < Edam
Edam,A

Edam,s
Edam,f

Xu+19

Lazarian 2002, 2004, 2011; Farmer & Goldreich 2004;
Beresnyak & Lazarian 2008). The nonlinear damping rate
takes the form (Yan & Lazarian 2011)

( )G = - -r l V 78L A Aturb
1
2

1
2

for <r lL A in super-Alfvénic turbulence, and

( )G = - -r L V 79L Lturb
1
2

1
2

for <r lL tr in sub-Alfvénic turbulence.

As an example, Figure 15 compares the growth and damping
rates at different CR energies in the WNM environment. The ion–
neutral collisional damping rate for parallel Alfvén waves
(Equation (4b) with θ= 0) applies, which has the value of
∣ ∣w n= 2I in at large wavenumbers corresponding to low CR
energies. Note that neutral-viscous damping is unimportant for the
generated waves in this particular case. The nonlinear damping
only exists for CRs with rL larger than the parallel damping scale of
the background Alfvénic turbulence. The parallel damping scale of
Alfvénic turbulence in the case of the WNM is given by
Equation (34). For the growth rate represented by the solid line, we
assume vstream has the same order of magnitude as VA and adopt the
CR density near the Sun, ( )>G = ´ G- - -n 2 10 cmCR

10 1.6 3

(Wentzel 1974). This shows that the streaming instability can only
overcome the collisional damping and effectively contribute to
particle scattering for CRs with energies lower than ∼10GeV.
Crosses show a higher growth rate with the CR density increased
by three orders of magnitude. As a result, CRs with up to ∼1 TeV
can be significantly scattered and confined.
From the above example we can see that to establish a

comprehensive picture of CR propagation, other scattering
mechanisms should also be incorporated in addition to direct

Figure 14. Parallel mean free path of CRs as a function of their energies in the (a) WNM, (b) CNM, (c) MC, and (d) DC. Vertical dashed lines represent the CR
energies withrL equal to the damping scales of Alfvén (E Adam, ), slow (E sdam, ), and fast (E fdam, ) modes. Note that E Adam, is below the energy range shown in (a). Etr is
the energy corresponding to ltr. The horizontal dashed lines in (b), (c), and (d) refer to the length scales of lA.

Table 5
The Minimum Energy of CRs Unaffected by Turbulence Damping

in Different ISM Phases

ISM Phases
-kdam

1
Ek,min

Alfvén Fast Slow

WNM 0.003 pc 4.0 pc L 45.3 PeV
CNM 0.005 pc 0.1 pc 0.04 pc 1.2 PeV
MC 6.7 au 0.002 pc 98.2 au 18.9 TeV
DC 35.0 au 0.009 pc 261.7 au 0.99 PeV
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CNM 
30 cm-3, xion= 10-3 
100  K, 8.66 μG 
β = 0.23, MA = 2.9

H2 
300 cm-3, xion= 10-4  

20  K, 8.66 μG 
β = 0..2, MA = 9.2

Xu et al. 2016
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rates at different CR energies in the WNM environment. The ion–
neutral collisional damping rate for parallel Alfvén waves
(Equation (4b) with θ= 0) applies, which has the value of
∣ ∣w n= 2I in at large wavenumbers corresponding to low CR
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the background Alfvénic turbulence. The parallel damping scale of
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Equation (34). For the growth rate represented by the solid line, we
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(Wentzel 1974). This shows that the streaming instability can only
overcome the collisional damping and effectively contribute to
particle scattering for CRs with energies lower than ∼10GeV.
Crosses show a higher growth rate with the CR density increased
by three orders of magnitude. As a result, CRs with up to ∼1 TeV
can be significantly scattered and confined.
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comprehensive picture of CR propagation, other scattering
mechanisms should also be incorporated in addition to direct
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WNM 
0.4 cm-3, xion= 10-1 
6000 K, 8.66 μG 
β = 0.22, MA = 0.4
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inefficient scattering for 
CRs < 10 TeV outside 

the Galactic halo 



scattering on self-excited waves
gyro-resonance::  
co-propagating wave excited by the streaming instability  

if locally anisotropic CR distribution :  if  

excited by the number density of all CR with rigidity > B/k 

relation between CR anisotropy and spatial density gradient 

if       (small anisotropy) 

relation  

efficient pitch-angle scattering because   
if strong coupling => CR isotropisation in the Alfvén wave frame  

=> advection at vA down CR pressure gradients 

if moderate coupling : faster diffusion (larger ) 

no 2nd-order Fermi (re)acceleration 

CRs exert a force on the gas 
CRs heat the gas 

k∥v∥ − ωr ≈ k∥v∥ = Ωgyr

Γgrow > 0 ∂f
∂μ

> 0

f(p) = f0(p) + μf1(p) + 1
2 μ2 f2(p)

∂f1
∂μ

= − v
νsc

∂f0
∂s

λ ∼ Rgyr

κ∥

interactions with turbulence modes. For relatively low-energy
CRs, streaming instability can be a promising mechanism of CR
confinement by scattering. For high-energy CRs with their rL
exceeding the damping scale of MHD turbulence, TTD and
gyroresonance scattering operate. For CRs with intermediate
energies, their confinement is mainly attributed to field line
wandering as mentioned earlier.

We again stress that in analyzing these scattering processes
in a partially ionized medium, ion–neutral collisional damping
is an essential physical ingredient, which determines the
dissipation scale of the turbulence cascade and is the major
constraint for the growth of instabilities. Taking the damping
effect into account is necessary to attain realistic calculations of
diffusion coefficients and a proper understanding of CR
propagation in a partially ionized medium.

7. DISCUSSION

The two-fluid dispersion relations for magnetoacoustic waves
used in this paper are taken from earlier works by Soler et al.
(2013a) and Zaqarashvili et al. (2011), where the basic equations
and detailed derivations are provided. Also, an approximate
study of propagating waves (i.e., ωR) in both high and low-β
plasmas was shown in Soler et al. (2013a). However, these
works mainly focus on numerical studies, which depend on the
specific parameter space adopted. In the current work, we
performed a comprehensive analysis of both the propagation and
damping of MHD waves in a partially ionized medium, and for
the first time achieved the expressions of wave frequencies for
all branches of slow waves over the whole range of the wave
spectrum. In addition, we present the solutions to both two-fluid
and single-fluid dispersion relations derived from different
analytical procedures. As the most noticeable difference, this
work is devoted to the damping of MHD turbulence, thus
accordingly we introduce the effect of turbulence anisotropy in
the behavior of wave modes, instead of using a constant

propagation angle as in Soler et al. (2013a) and Zaqarashvili
et al. (2011). We furthermore reveal the physical connections
between MHD turbulence and linear waves in terms of damping.
In view of the astrophysical environments dealt with in this

paper, we restrict ourselves to analysis in low-β conditions, but
the simplified wave frequencies in high-β conditions can also
be easily obtained from the general solution in Equation (11).
For instance, in a high-β and weakly ionized gas, we find that
the wave frequencies in the strongly coupled regime are

( )w = c k a, 80R s
2 2 2

( )w
x
n b

x
n

= - = -^ ^⎛
⎝⎜

⎞
⎠⎟

V k

c

c k
b

2
2

2
, 80I

n A

ni s

n s

ni

4 2

2

2 2 2

for fast modes, and

( )w q= V k acos , 81R A
2 2 2 2

( )w
x

n
= -

V k
b

2
, 81I

n A

ni

2 2

for slow modes. Different from the low-β case, the propagation
of slow waves in a high-β medium becomes similar to that of
pseudo-Alfvén waves. But unlike the damping rate of Alfvén
waves (Equation (5b)), slow waves are subject to frictional
damping in both the parallel and perpendicular directions to the
magnetic field. Fast waves propagate isotropically at the speed of
sound. Similar to the slow waves in a low-β medium, the
magnetic field is unaffected by purely parallel propagation of
sound waves and thus damping is absent. In addition, the
damping rate of the fast waves at high-β is reduced by b~ -2

(Equation (80b)). It reflects that sound waves are only marginally
damped in an environment where thermal energy dominates over
magnetic energy. In the weakly coupled regime, fast and
slow waves have propagating parts of w = c kR si

2 2 2 and
w q= V k cosR Ai

2 2 2 2 , respectively, and the same damping rate as
in Equation (6b). The analytical solutions under high-β
conditions can also be obtained via the single-fluid approach
as described in Section 3.2, but only for the strongly coupled
regime. For example, the wave frequencies at the incompressible
limit are given in Equation (88) in Appendix B, which are
consistent with Equations (80) and (81) at b  ¥. Specific
cases of parallel and perpendicular propagation at high-β are also
displayed in Appendix B (Equations (97) and (98)).
In a partially ionized medium, the wave behavior strongly

depends on the coupling state between neutrals and ions. We
specifically distinguish the neutral–ion and ion–neutral decou-
pling scales of three modes and the regimes with different
coupling degrees separated by them. The cutoff boundaries of
waves are closely correlated with the decoupling scales. In fact,
the cutoff interval approximately shares the same domain as that
between the neutral–ion and ion–neutral decoupling scales. This
coincidence indicates that fluid decoupling can be the physical
origin of the wave cutoff. Unlike Alfvén and fast waves,
propagating waves can arise within the original cutoff region of
slow waves, which results in two cutoff intervals sitting among
three propagating wave branches. We provide full analytical
expressions of all the cutoff boundaries and the wave frequencies
of both neutral and ion slow waves in different coupling regimes.
Slow waves on scales within [ ]k k,ni indec, dec, exhibit more
complicated properties in both the propagating and damping

Figure 15. Growth and damping rates (normalized by νni) of streaming instability
as a function of CR energy in WNM. The dashed line is the ion–neutral collisional
damping rate. The dashed–dotted line is the nonlinear damping rate. The growth
rates with different CR number densities, ( )>G = ´ G- - -n 2 10 cmCR

10 1.6 3

(solid line), and ( )>G = ´ G- - -n 2 10 cmCR
7 1.6 3 (crosses) are shown. The

vertical dashed line indicates the CR energy with rL equal to the parallel damping
scale of the background Alfvén modes.
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how fast do 
cosmic rays travel ?



∲ermi
if self-streaming transport  

steady-state approximation 
often holds 

+ Alfven-wave dark regions  

where  

 variations by 50 to 1000  

in multi-phase ISM 

if self-streaming CR transport with waves and CRs fully coupled 

diffusion anisotropy varies with  and ionisation fraction 
super-diffusion perpendicular to B, but also often along B
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Figure 6. Temporally-averaged median of the scattering coe�cient �k (left panel) and mean free path �c (right panel). Di↵erent

colors represent di↵erent models: gold for R2, dark cyan for R4 and coral for R2. The shaded areas cover the 16th to 84th

percentiles of the temporally-averaged variations around the mean.

We can conclude that the propagation of CRs out of
the galactic disk becomes more and more e↵ective going
from R8 to R2 mostly because the gas advection veloc-
ities become higher and higher, especially in hot gas.
At the same time, the denser poorly-ionized gas that
makes up most of the mass is dominated by di↵usion.
Meanwhile, ion Alfvén speeds exceed advection speeds
in the higher-density poorly-ionized gas and exceed dif-
fusion speeds in the low-density well-ionized gas. Thus,
in well-ionized hot gas, di↵usion is always quite small
and CRs are transported by a combination of advection
(primary) and Alfvénic streaming (secondary), while in
poorly-ionized dense gas the CRs are very strongly di↵u-
sive. The e↵ect of all three transport mechanisms must
therefore be considered to understand the relation be-
tween CR pressure in the disk and SFR surface density.

4. PREDICTIONS FOR THE DYNAMICAL
EFFECTS OF COSMIC RAYS

Although the back-reaction of thermal gas and mag-
netic field to the CR pressure cannot be directly studied
in this work, we can use the distribution of CR pressure
inferred from our post-processed simulations to make
predictions about the dynamical e↵ect of CRs in galax-
ies. In the following, we investigate the potential impact
of CRs on the dynamics of the ISM gas overall, as well
as individual thermal phases. We define three di↵erent
gas phases based on temperature: warm (5050 K < T <

2 ⇥ 104 K), intermediate (2 ⇥ 104 K < T < 5 ⇥ 105 K),
and hot (T > 5 ⇥ 105 K) phase.

4.1. Momentum Flux and Weight

In the presence of CRs, the gas-momentum equation
becomes (e.g. Jiang & Oh 2018):
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where for our simulations �tot is given by the sum due to
the “external” gravitational potential from the old stel-
lar disk and dark matter halo plus the gravitational po-
tential of the gas obtained by solving Poisson’s equation
(see Kim & Ostriker 2017). The term �

$
tot ·(Fc�4/3ecv)

represents the force exerted from the CR population on
the thermal gas.

We now focus on the momentum equation in the z di-
rection, considering a shearing-periodic box and taking
horizontal and temporal averages. We formally separate
the terms from di↵erent thermal phases and sum over
them, obtaining the following equation for the vertical
momentum of gas:
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Here, hqi
ph

is the average over time of q̄ph(z; t), the hor-
izontal average of a quantity q for a given thermal phase
at height z, defined as

q̄ph(z, t) =
X

x,y

q(x, y, z; t)⇥ph(T )�x�y

LxLy

, (23)

with ⇥ph(T ) the top-hat function that returns 1 for gas
at temperatures within the temperature range of each
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Figure 8. Ratio of parallel and perpendicular di�usion coe�cients as a function of MA0 for all trials; the ion fraction j is shown in the colour bar. Note that,
particularly for the runs with a target MA0 = 01, the actual MA0 values scatter slightly around the target because the actual velocity dispersion produced by
our driven turbulence simulations fluctuates slightly relative to the target value we select by turning the driving rate. We highlight three distinct regions of
MA0, characterised by the dominance of di�erent di�usion mechanisms, which we term anisotropic (MA0 . 0.5), transitional (0.5 . MA0 . 2) and isotropic
(MA0 & 2). In the anisotropic region we have a clear di�erence between the rates of perpendicular and parallel di�usion. The level of anisotropy in this region
is governed by j, which we illustrate in the inset plot showing ^k/^? plotted against j for the simulations with MA0 = 0.1, together with the simple scaling
^k/^? = Estr/2; the data points shown are averages over the runs with di�erent M, with the error bars showing the 1f scatter about this average.

along B-field lines, the rate of di�usion is ultimately limited by the
timescale on which the tangled field lines are able to explore all space
in the box.

4.2 Fitting formulae

As discussed in Section 1, one of the primary motivations for our
work is to provide an e�ective theory for CR transport that can
be used in cosmological or galactic-scale simulations that do not
resolve turbulence in the ISM. To facilitate this, in this section we
construct a series of models to calculate CR di�usion coe�cients
given values for MA0 and j; we omit M since its e�ects are small
within our system units of time = g. The intended use for these models
is much the same as in large eddy simulations: one can measure the
plasma parameters at the minimum resolved scales, and use these in
the formulae provided below to assign an e�ective subgrid di�usion
coe�cient for CRs due to the unresolved turbulent structure and flow;
we discuss below how to treat superdi�usion approximately in such
a framework. Since we have seen that there are two general regimes
for CR transport, corresponding to MA0 ⌧ 1 and � 1, and that the
parameters describing transport are relatively flat in each of these

two regimes, we fit all quantities using a generic functional form

5 (MA0, j) = ?0j
?1 + ?2j

?3

⇢
tanh [?4 (logMA0 � ?5)] + 1

2

�
.

(20)

The function in curly braces has the property that it goes to zero
for when MA0 ! 0 (for positive ?4) and to unity for MA0 ! 1,
which provides the two flat plateaus at low and high MA0 that we
have observed. The parameters ?4 and ?5 control the steepness and
location of the transition between the two plateaus, respectively;
?0 and ?1 provide the normalisation and dependence on j for one
plateau, while ?2 and ?3 serve the same purpose for the other plateau.

We begin by providing a fit for ^ k/^?, which quantifies the
anisotropy of the di�usion. We perform a simple non-linear least
squares fit of our data for log(^ k/^?) from all our simula-
tions, weighting them all equally, to a functional of the form
log 5 (MA0, j), where 5 given by equation 20. We report the best-fit
parameters and their uncertainties in Table 2, and we plot our fit
against the data in Figure 9, which shows that the fit captures the
basic trends well. We repeat this process for ^? and for D k/Estr,0,
where Estr,0 = 1/MA0

p
j is the mean small-scale streaming speed.

We report our fit parameters for these quantities in Table 2 as well,
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Figure 8. Comparison of the simulated diffusion coefficient (hor-
izontal axis, defined in Eq. 10) and the steady state diffusion coef-
ficient (vertical axis, defined in Eq. 26) at t = 4 Gyr. The steady
state diffusion coefficient is calculated based on the assumed in-
stantaneous balance between Alfvén wave growth and damping.
We weight each computational cell of the simulation with its CR
energy before binning into this histogram. The grey line corre-
sponds to a 1-to-1 relation.

diffusion coefficients derive from the streaming and diffusion
picture of CR transport where the streaming process provides
an additional convective process that transports CRs along
magnetic field lines. Both descriptions are not comparable
to an effective diffusion coefficient e↵ = fcr/(b ·r"cr) that
describes the CR flux resulting from streaming and diffusion
processes effectively in a diffusion-only approximation.

Both, Alfvén wave growth and damping are fast processes
with typical time scales of ⇠ 10 kyr. Hence, we would naively
expect the diffusion coefficient to also reach the steady state
on these time scales. However, near the steady state the typ-
ical and effective time scale of Alfvén wave dynamics can be
slower when damping and growth are nearly balanced. This
leaves the probability of Alfvén waves with associated diffu-
sion coefficients that only fluctuate around the steady state.

In Fig. 8, we find an additional population of CRs with  ⇠
103steady and a broad distribution of diffusion coefficients
that have high  � steady ⇠ 1028cm2 s�1. That particular
sub-population of CRs and their associated Alfvén waves fail
to reach a steady state. Inspecting Fig. 7 we find that the
broad distribution of high  values is caused by Alfvén wave
dark regions and their vicinities where numerical diffusion
causes a decrease of the surrounding Alfvén wave energy. This
causes mixing of Alfvén-wave energies at the interfaces of
dark regions and thus a broadened distribution of CR energy
densities and the corresponding diffusion coefficients.

In Fig. 9 we correlate the simulated diffusion coefficient

 with various quantities using two-dimensional histograms.
We again weight each bin of the histogram with the CR en-
ergy contained to highlight the relevance of each bin for the
CR dynamics. In the left-hand panel of Fig. 9 we compare the
diffusion coefficient with the local CR energy density and also
find distinct diffusion coefficients that correspond to the dis-
cussed steady-state population and Alfvén wave dark regions.
The steady state population contains most of the CRs and has
 ⇠ 1027–1030cm2 s�1 for "cr ⇠ 1035–1043erg pc�3. We find
a weak correlation of  ⇠ 1028cm2 s�1("cr/10

42 erg pc�3)�0.5

with a substantial scatter around the relation by approxi-
mately an order of magnitude. This scaling can be understood
by assuming that the diffusion coefficient of these CRs is near
its steady state value and thus can be described by Eq. (26)
while the typical length scale of CRs in the halo does not
show large variations. In this case,  / "

�0.5
cr directly follows

from Eq. (26). The second population of CRs is characterised
by CR energy densities in the range "cr ⇠ 1040–1043erg pc�3

but with  values that connect the steady-state diffusing CRs
with  ! 1. CRs belonging to the second population reside
in and around the Alfvén wave dark regions. Thus, steady-
state diffusing CRs are not associated with the Alfvén wave
dark regions and are consequently the volume filling popula-
tion.

Correlating  with the magnetic field strength B in the
middle panel of Fig. 9 reveals at most a very weak correla-
tion between these quantities. Both, the volume filling CR
population and the population associated with the Alfvén
wave dark regions are visible. The magnetic field ranges four
orders of magnitude for a given diffusion coefficient  of the
volume filling CR population and thus, we cannot deduce a
clear relation between the two quantities. For the volume fill-
ing population, where  ⇠ steady, this follows from Eq. (26)
because steady does not depend on B.

The right panel of Fig. 9 shows the relation of the diffusion
coefficient with the local mass density ⇢. The two populations
of CRs are also visible and separated from each other. The dif-
fusion coefficient of the volume filling CR population shows
a strong scatter around a weak correlation with mass den-
sity,  ⇠ 1028cm2 s�1(⇢/3⇥ 10�4 mp cm

�3)�0.5. This scaling
is empirical because steady from Eq. (26) does not directly
depend on ⇢. At mass densities that correspond to the halo-
disc interface (⇢ ⇠ 10�3–10�1mp cm�3) the typical diffusion
coefficient is  ⇠ 3⇥ 1027cm2 s�1.

We note that while the diffusion coefficient reaches a steady
state most of the time, this is not the case for the CR flux as
discussed in Section 5.1. This difference is not a contradiction
because the two quantities describe two separate physical pro-
cesses that have different associated timescales. The diffusion
coefficient is a measure for how fast CRs are scattered and its
steady state is set by the balance of wave growth and wave
damping. Consequently, this steady state can be reached on
the timescales of the contributing growth and damping pro-
cesses. The CR flux or the CR transport velocity are measures
of how fast CR energy is transported and its steady state is
mediated by the interaction with Alfén waves. This steady-
state can only be reached on a much longer timescale that
is not only characterised the CR scattering process but also
by the hydrodynamic adjustments of the gradients in CR en-
ergy density, which appears to be the rate-limiting step (see
Eq. 22).
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Figure 8. Comparison of the simulated diffusion coefficient (hor-
izontal axis, defined in Eq. 10) and the steady state diffusion coef-
ficient (vertical axis, defined in Eq. 26) at t = 4 Gyr. The steady
state diffusion coefficient is calculated based on the assumed in-
stantaneous balance between Alfvén wave growth and damping.
We weight each computational cell of the simulation with its CR
energy before binning into this histogram. The grey line corre-
sponds to a 1-to-1 relation.

diffusion coefficients derive from the streaming and diffusion
picture of CR transport where the streaming process provides
an additional convective process that transports CRs along
magnetic field lines. Both descriptions are not comparable
to an effective diffusion coefficient e↵ = fcr/(b ·r"cr) that
describes the CR flux resulting from streaming and diffusion
processes effectively in a diffusion-only approximation.

Both, Alfvén wave growth and damping are fast processes
with typical time scales of ⇠ 10 kyr. Hence, we would naively
expect the diffusion coefficient to also reach the steady state
on these time scales. However, near the steady state the typ-
ical and effective time scale of Alfvén wave dynamics can be
slower when damping and growth are nearly balanced. This
leaves the probability of Alfvén waves with associated diffu-
sion coefficients that only fluctuate around the steady state.

In Fig. 8, we find an additional population of CRs with  ⇠
103steady and a broad distribution of diffusion coefficients
that have high  � steady ⇠ 1028cm2 s�1. That particular
sub-population of CRs and their associated Alfvén waves fail
to reach a steady state. Inspecting Fig. 7 we find that the
broad distribution of high  values is caused by Alfvén wave
dark regions and their vicinities where numerical diffusion
causes a decrease of the surrounding Alfvén wave energy. This
causes mixing of Alfvén-wave energies at the interfaces of
dark regions and thus a broadened distribution of CR energy
densities and the corresponding diffusion coefficients.

In Fig. 9 we correlate the simulated diffusion coefficient

 with various quantities using two-dimensional histograms.
We again weight each bin of the histogram with the CR en-
ergy contained to highlight the relevance of each bin for the
CR dynamics. In the left-hand panel of Fig. 9 we compare the
diffusion coefficient with the local CR energy density and also
find distinct diffusion coefficients that correspond to the dis-
cussed steady-state population and Alfvén wave dark regions.
The steady state population contains most of the CRs and has
 ⇠ 1027–1030cm2 s�1 for "cr ⇠ 1035–1043erg pc�3. We find
a weak correlation of  ⇠ 1028cm2 s�1("cr/10

42 erg pc�3)�0.5

with a substantial scatter around the relation by approxi-
mately an order of magnitude. This scaling can be understood
by assuming that the diffusion coefficient of these CRs is near
its steady state value and thus can be described by Eq. (26)
while the typical length scale of CRs in the halo does not
show large variations. In this case,  / "

�0.5
cr directly follows

from Eq. (26). The second population of CRs is characterised
by CR energy densities in the range "cr ⇠ 1040–1043erg pc�3

but with  values that connect the steady-state diffusing CRs
with  ! 1. CRs belonging to the second population reside
in and around the Alfvén wave dark regions. Thus, steady-
state diffusing CRs are not associated with the Alfvén wave
dark regions and are consequently the volume filling popula-
tion.

Correlating  with the magnetic field strength B in the
middle panel of Fig. 9 reveals at most a very weak correla-
tion between these quantities. Both, the volume filling CR
population and the population associated with the Alfvén
wave dark regions are visible. The magnetic field ranges four
orders of magnitude for a given diffusion coefficient  of the
volume filling CR population and thus, we cannot deduce a
clear relation between the two quantities. For the volume fill-
ing population, where  ⇠ steady, this follows from Eq. (26)
because steady does not depend on B.

The right panel of Fig. 9 shows the relation of the diffusion
coefficient with the local mass density ⇢. The two populations
of CRs are also visible and separated from each other. The dif-
fusion coefficient of the volume filling CR population shows
a strong scatter around a weak correlation with mass den-
sity,  ⇠ 1028cm2 s�1(⇢/3⇥ 10�4 mp cm

�3)�0.5. This scaling
is empirical because steady from Eq. (26) does not directly
depend on ⇢. At mass densities that correspond to the halo-
disc interface (⇢ ⇠ 10�3–10�1mp cm�3) the typical diffusion
coefficient is  ⇠ 3⇥ 1027cm2 s�1.

We note that while the diffusion coefficient reaches a steady
state most of the time, this is not the case for the CR flux as
discussed in Section 5.1. This difference is not a contradiction
because the two quantities describe two separate physical pro-
cesses that have different associated timescales. The diffusion
coefficient is a measure for how fast CRs are scattered and its
steady state is set by the balance of wave growth and wave
damping. Consequently, this steady state can be reached on
the timescales of the contributing growth and damping pro-
cesses. The CR flux or the CR transport velocity are measures
of how fast CR energy is transported and its steady state is
mediated by the interaction with Alfén waves. This steady-
state can only be reached on a much longer timescale that
is not only characterised the CR scattering process but also
by the hydrodynamic adjustments of the gradients in CR en-
ergy density, which appears to be the rate-limiting step (see
Eq. 22).
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99% nuclei (～ 89% protons, ～ 10% He, ～ 1% heavier nuclei) + 1% electrons 
spallation reaction products in the interstellar medium
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99% nuclei (～ 89% protons, ～ 10% He, ～ 1% heavier nuclei) + 1% electrons 
spallation reaction & products in the interstellar medium

cosmic-ray composition vs. solar abundances
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steady state between source input and loss + escape 

ISM grammage crossed  before escape:     

spallation reactions in the ISM 
secondary source input 

secondary spallation losses 

steady state 

2dary/1ary ratio 

X ≈ 10 g/cm2  or NH ≈ 4 1024 cm-2 
radioactive secondaries : CR clocks 
Tesc ≈ 10-20 Myr

X(p) = nISM β(p)c Tesc(p)

simplest leaky box model

CR halo

H+ gas, δB’/B

∫n
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∫nH.dl ≈ 4 1024 cm-2

H2+H+H+ gas, δB/B

2HECR-2

ECR-2.7

D∝ECR 0.6-07

σnSM βc

βc dt

nISMσ βcdt = 1

H2

κ(p) = Tesc(E) ∝ κ(p)−1

Ma(p)
Tsp(p) + Ma(p)

Tesc(p) = Qa(p)

Tsp2 = (nISMσ2→3 βc)−1

Q2 = dM2
dt

= nISMσ1→2 βc M1

⇒ M2 [T−1
sp2 + T−1

esc] = M2 [nISMσ2→3βc + T−1
esc(p)] = Q2 = nISMσ1→2 βc M1

M2(p)
M1(p) = σ1→2

σ2→3 + X−1(p)

M2
M1

→ X(p) ∝ Tesc(p) ∝ κ−1(p)

M2
M1

∝ p−δ ⇒ D(p) ∝ pδ



mean uniform diffusion coefficient in the Milky Way

1D - 2D - 3D diffusion codes

!

κ(GeV/n) ≈ 1028−29 cm2/s, lscat ≈ 3κ/c ∼ 1 pc



but 2 classes of CR primaries, with secondary contamination 

but 2 classes of secondaries
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total cosmic-ray power
total power ≥ GeV 

from spallation residence time Δtcr and grammage  

MISM = 1010 M⨀ ≈ 2 1040 kg, Xcr ≈ 102 kg/m2 

total Milky Way CR power from GALPROP diffusion model  
= (0.7 - 0.8) 1034 W  

Xcr ∼ ρISM c Δtcr

Strong+2010

far IR
 + opt

synch 
(ecr)

γ (
Acr
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pcr

αcr

ecr

Pcr ∼ ECR

Δtcr
=

ucrVgal

Δtcr
=

ucrVgalρISM c
Xcr

=
ucr c MISM,gal

Xcr

Dogiel+2002

Pcr ≈ 1034 W

10% of the total power  
of supernova explosions  

in the Milky Way



wicked data



outer-space collection

100 aushock

Figure 3. Mollweide map of distance from the Sun to the TS from our spherical approximation of the TS passing through the four known points (top). Dashed lines
show latitudes of the Voyagers (V1 and V2) crossings (and hence their disconnections from the TS) and the solid white line shows the B−V plane (defined by the
local interstellar magnetic field (B) and plasma inflow (V ) vectors and orders the external forces on the heliosphere). The spatial distribution of ∼4.3 keV ENA fluxes
observed by IBEX in 2017 (bottom) show that the nearest region of the TS (and heliosheath) is located close to that indicated by the spherical approximation, and not
to the port (left in this image) as would be expected for the transverse tilt of the interstellar field (along the B−V plane).

Figure 4. Schematic representation of the three-dimensional heliosphere. Inside the TS, the solar wind expands radially in all directions, wrapping up the
interplanetary magnetic field into Archimedean spirals (black/white). As shown by McComas & Schwadron (2006), the blunt TS geometry produces a
characteristically variable geometry with increasing perpendicular shock geometries and longer connection times for particle acceleration as the connection point
moves back tailward along the TS (red). Beyond the TS, V1 and V2 were magnetically connected (yellow “Connection Region”) farther back along the flanks of the
TS until the magnetic flux tube each was on disconnected from the farthest point back on the shock. The two TS crossing points and two disconnection points define a
sphere that observationally determines the overall size and location of the TS for the first time. This spherical approximation for the TS has a radius of 117 au and is
centered at {x, y, z}={−32, 12, 27} au in the coordinate system shown.
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RTS= 117 au, centred on  
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now 135.8 au
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AZ+ + e±  probed in γ rays 
Fermi LAT > GeV 

e± probed by radio synchrotron 
30 haloes piled-up by Chan-ges

remote sensing of  GeV cosmic rays≳
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radio tracing difficulties
BISM ≈ 2 - 20 μG, νradio = 0.1-10 GHz => 0.1 ≤ Ee ≤ 50 GeV in the unknown spectral range where significant change in slope 
B⟂ variations along the line of sight and in the telescope beam

408 MHz
Voyager 1 
Voyager 2

Pamela 
Fermi-LAT 
AMS-02
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collapse of “elongated” clouds along B with  and mass   

virial equilibrium    and magnetic flux :    

equipartition between magnetic and kinetic (thermal+turbulent) energy densities :  

why don’t we see the dense clouds in synchrotron emission ?

h∥ > R⊥ M ∝ ρR2h
c2

s ∝ Φg ∝ ρh2 BR2 = cte ⇒ B ∝ cs ρ1/2

B2

2μ0
∝ ρ σ2

v ⇒ B ∝ σv ρ1/2

radio tracing problem

γ rays τ353GHz dust 408 MHz


