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“Star-forming regions, clumps, and cores”
Star formation process at intermediate scales: 

from clumps to cores

Observational 
Projects:

Lecture 1 (FM): Cores
Lecture 2 (FM): Cores within protoclusters/clumps
Lecture 3 (AT): Star-forming regions
Lecture 4 (AT): Clumps

Frédérique Motte (IPAG Grenoble)
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Outline / Part I

1. Introduction
• The necessarily complex definition of cores

2. Algorithms to identify large populations of cores

3. Variety of environment in the MW

4. Core mass functions (CMFs)

5. The resulting IMF…
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Summary of Lecture 1

February 15-16, 2024 F. Motte, The physics of SF

Cores are assumed to be the direct progenitors of stars 

Observationally, they are gravitationally bound small-scale
(0.02-0.1 pc) fragments.

They are mainly studied in the FIR-mm wavelength range.

Prestellar cores, on the verge of collapse, evolve into protostars.

Caveats: Cores form in multi-fractal clouds, which may be 
traversed by hierarchical inflowing gas.

Lecture 2 
“Demography of cores in protoclusters to constrain SF”
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Quasi-static versus dynamical pictures
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Numerical simulations of kpc-pieces of a galaxies argue for a hierarchy of cloud 
structures and inflows (Hennebelle2018; Vazquez-Semadeni+2019; Padoan+2020)

More centrally concentrated
à Hubs and ridges

Wu+ 2017



Specificity of the formation of high-mass stars

• HII regions à Accretion barrier?
Initial high-mass star formation models:
- Monolithic collapse of a turbulent core 

(McKee & Tan 2003)
- Competitive accretion within a protocluster

(Bonnell & Bate 2006)
• Gas inflow and lack of prestellar cores à

Dynamical process?
- Sporadic and non-spherical accretion streams

(e.g., Smith+ 2009; Vazquez-Semadeni+ 2017)

Ionization & expansion

UV

Luminous (>105 L¤) phase
(e.g., Beuther+ 2002a-b)

IR-quiet (102 104 L¤) phase
(e.g., Motte+ 2007)

Protostellar accretion and 
ejection (strong and variable)
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e.g., Churchwell+ 1999
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Low-mass prestellar cores become

protostars with increasing mass

Ø Gas is accreted onto ridges, 
clumps, cores, and finally
stellar embryos.

ÞAccretion cascade model

Ø Stars, cores, and clumps
simultaneously grow from the 
mass of their parental ridge.

Þ ‘’clump-fed’’ model

No need for a high-mass 
prestellar core phase

In ridges & hubs, the “gas reservoir” is not a single “core”
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Evolutionary scenario for the formation of high-mass stars

Motte, Bontemps, & Louvet 2018a
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Outline / Part II

1. Introduction

2. Algorithms to identify large populations of cores
• Unbiased surveys of cores
• Core extractions techniques

3. Variety of environment in the MW

4. Core mass functions (CMFs)

5. The resulting IMF…
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Surveys of cores
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2000-2010: Ground-based surveys of nearby clouds (< 500 pc) 
@ (sub)mm wavelengths (Motte+ 1998; Testi & Sargent 1998; Stanke+ 2006; 
Enoch+ 2008; …)

>2010: Herschel surveys (databases)
Gould Belt: 100-500 pc clouds (André+ 2010)
HOBYS: 1-3 kpc clouds (Motte+ 2010)
Hi-GAL: Galactic plane (Molinari+ 2010)
PGCC: Planck clumps (Juvela+ 2010)

Motte+ 1998

Molinari+ 2010
https://vialactea.iaps.inaf.it



High-mass star-forming clouds with Herschel
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Cyg OB2

70μm, 160μm, 250μm

Hennemann+ 2012

100 pc

CygOB2, 
45-100 O stars

DR21 ridge
104 M¤¤

Cygnus X

10 pc

NGC 2244
7 O stars

Rosette

70μm, 160μm, 250μm

Schneider+ 2010

Large populations of cores
embedded within the 

complex structure of clouds



Initial core extraction techniques

February 15-16, 2024 F. Motte, The physics of SF 11

Initial techniques
• Clumpfind (Williams 1994) 

à threshold, 3D contours
• Gaussclump (Kramer+ 1998)

à multiscale 3D Gaussians

Peaks in high-pass filtered maps
• MRE-GCL (Motte+ 2007) à Gaussian fits 
• Hyper (Traficante+ 2015) à aperture integrations, deblending 

Herschel SEDs analysis need either:
- The SAME area to integrate flux at all wavelengths (Traficante+ 2015)

- To rescale fluxes assuming an intensity distribution (Motte+ 2010)

SDC19.073-0.602 SDC19.073-0.602
High-pass filtered map

Traficante+ 2015



Classical core extraction techniques
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Cores identified as clear local peaks

- getsf (Men’shchikov 2021)

Previously: getsources (Men’shchikov+ 2012) and MRE-GCL (Motte+ 2007)

- CuTEx (Molinari+ 2017) or GExt2D (Bontemps+ prep.)

Cores identified as pixels within closed contours

- dendrogram (Rozolowski 2008) 

Previously: Clumpfind (Williams+ 1994)

Cores identified as labelled pixels

- CNN-Extract (Robitaille+ in prep)

Cores identified as Virialized structures: See talk by Simon Chevalier



Cores extraction with getsf

- Getsf decomposes each image into single-scale images.

- Combines all detection images to optimize source 
detection.

- For each source, it defines the scales and the area over 
which it emits in the wavelength-combined image.

Use multi-resolution images and radial intensity profiles to 
define core footprints.

- For each source at each wavelength, it estimates and 
subtract the local background, filaments, and it 
deblends sources.

Þ Final table will contain for each source: a single position 
with fluxes and sizes at all wavelengths.

+
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core

background

core + filaments

background

Men’shchikov+ 2021



Cores extraction with getsf

- Getsf decomposes each image into single-scale images

- Combines all detection images to optimize source 
detection

- For each source, it defines the scales and the area over 
which it emits in the wavelength-combined image.

Use multi-resolution images and radial intensity profiles to 
define core footprints.

- For each source at each wavelength, it estimates and 
subtract the local background, filaments, and it 
deblends sources.

Þ Final table will contain for each source: a single position 
with fluxes and sizes at all wavelengths.
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Men’shchikov+ 2021

Pros:
• Multi-

wavelength
• Good source 

deblending

Cons:
• Heavy!
• 2D only

14



Cores extraction with CuTEX
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CuTEx (Molinari+ 2016) or GExt2D (Bontemps+ in prep)

• identify compact sources with the second derivative

• remove their local background and 

• perform multi-Gaussian fits on background-subtracted images.

Input image 2D second derivative

Filament-like curvature Detected sources

Pros:

• Efficient core detection

• Good source deblending

Cons:

• Single wavelength

• Filaments can be 

identified as a series of 

cores if not removed (?)

Bontemps+ in prep



Cores extraction with Dendrogram
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dendrogram is a connected tree statistics that defines cores/leaves as its smallest-

scale structures outlined as closed contours.

Recent studies apply an initial large-scale filtering à Now focuses more on peaks

Pros:

• Tree statistics

• Can be applied to PPV

cube

Cons:

• Single wavelength

• Without initial 

filtering, leaves tend to 

be elongated & 

structured

Rozolowski 2008

Tree
decomposition

From trunks to leaves



Cores extraction with AI
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Algorithm based on 
• a fully convolutional neural network (CNN) trained on 

‘fBm’ models
• The inference built for an Herschel NH2 image shows that 

overdense gas components correspond to filaments + 
cores, the coherent structures identified by MnGSeg.  

Pros:
• Fast

Cons:
• Extract both spherical 

and elongated structures.
• Needs more tests

Robitaille+ in prep

MnGSeg coherent (color) + CNN (contours)
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Part II
Algorithms to identify large populations of cores
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We entered the survey era for cores.

Many core extraction algorithms have been developed. They 
tend to converge because our community has now the same 
definition for cores: local peaks in NH2 or nH2 images.

Newer algorithms are developed: with IA techniques or with 
more physics.

QUESTIONS!
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Outline / Part III

1. Introduction

2. Algorithms to identifying large populations of cores

3. Variety of environment in the MW
• Local (100-500 pc) Gould Belt clouds
• HOBYS and Hi-GAL clouds, the tip of the Galactic bar
• the Central Molecular Zone

4. Core mass functions (CMFs)

5. Effect of the fragmentation cascade



ALMA-IMF clouds

Gould Belt clouds
HOBYS clouds

CygX

CMZ

W43

ALMA-IMF
15 clouds, 103-104 M¤ 1 pc

20

Figure adapted from
Hurt & Benjamin 2008
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HOBYS
10 clouds with Herschel
105 - 106 M¤ 50 - 100 pc

Cloud diversity: local clouds, clouds in the closest MW 
arms, at the tip of the Galactic bar and in the CMZ

Gould Belt clouds:
105 M¤ 50  pc

Galactic Bar and 
Central Molecular Zone



The Gould Belt clouds in a local gas wave
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Using photometric surveys and the Gaia astrometric survey, Alves+2019 found
that the Gould Belt  is NOT an expanding ring

but a narrow arrangement of cloud: 160 pc x 2000 pc
undulating like a “Radcliffe wave”

Local system of clouds that form low-mass stars in the solar neighborhood (100-500 pc)

Þ HGBS cores are resolved in Herschel images.

Alves+ 2019



Herschel /HOBYS cloud complexes
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HOBYS clouds (Motte, Bontemps & Louvet 2018) 
the 10 closest 1-3 kpc massive cloud complexes (50 - 100 pc, 105 - 106 M¤) 
forming high-mass (>8 - 150 M¤) stars
imaged with Herschel (20 deg2)

Clouds defined from a NIR extinction image of the MW + CO cubes
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Cygnus X W48

M16-M17 NGC6334

Near-IR extinction map of the Galaxy by S. Bontemps

Nessy-like (100 pc long, Jackson+2010) filaments along the Galactic arms (> 1 kpc)

Þ HOBYS and Hi-GAL cores are not resolved in Herschel images. ALMA 
follow-ups with single pointings (Louvet+ 2018; ALMAGAL survey).

Bontemps+
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W43, an extreme molecular complex of the Milky Way
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Column density of the gas (GRS, Jackson+ 2006)

Star formation activity (GLIMPSE, Churchwell+ 2009)

Regions of high-density gas (ATLASGAL, Schuller+ 2009)

870 µm

l=22 degl=32 deg
Nguyen-Luong+ 2011

Þ Densest parts imaged by ALMA-IMF
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W43, a cloud agglomeration at the tip of the Galactic bar

24

W43 is located in front of the 
Galactic long bar (Nguyen 
Luong+ 2011b; Carlhoff+ 2013).

12CO gas flows along the 
Galactic arm and forms W43
through cloud-cloud collision 
(Motte+ 2014).

Region of collision

P1

P2

February 15-16, 2024

Scenario in agreement with 
numerical models of cloud 
collision at the edge of galactic 
bars (Renaud+ 2015)

Adapted from Churchwell+ 2009

Renaud+ 2015



Central Molecular Zone (CMZ)
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Cartoon based on the model by Rodriguez-
Fernandez+ 2006, 2008

Central molecular zone 
= nuclear ring (seen by Herschel)
+ kpc connecting arms arms/rings

Galactic center = 200 pc ring
(Molinari+ 2011)

8μm, 21μm, NH3

Kruijssen+2014

Þ Partly imaged by ALMA/ACES

Bally+ 2010
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Part III
Variety of environments in the Milky Way
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Groups of Galactic clouds:
- local (100-500 pc) Gould Belt clouds
- 1-3 kpc HOBYS clouds
- the tip of the Galactic bar
- the Central Molecular Zone

These cloud complexes correspond to pieces of Galactic arms.

Defining groups of clouds allows to perform homogeneous 
statistical studies with single observational facilities.

QUESTIONS!
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Outline / Part IV

1. Introduction

2. Algorithms to identifying large populations of cores

3. Variety of environment in the MW

4. Core mass functions (CMFs)
• in local (100-500 pc) Gould Belt clouds
• The ALMA-IMF and ALMAGAL Large Programs
• ALMA-IMF results on the CMF

5. The resulting IMF…



February 15-16, 2024 F. Motte, The physics of SF 28

The Initial Mass Function (IMF)

Initial mass function of stars (IMF)
= mass distribution of stars at birth The shape of the IMF has long 

been considered universal 
(Bastian +2010; Kroupa +2013, see 
however Hopkins 2018; Hennebelle 
ARAA 2024). 

But it might not be so 
universal.

Modeled by broken power-
laws or a log-normal function 
plus a power-law (Kroupa+ 

2001; Chabrier+2005).Stellar mass (M¤)
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Massive 
stars

Solar-type stars

0.5 M¤¤

Salpeter

power-law

Figure adapted from Offner+ 2014

0.08 M¤¤



Even if the relation between the 
CMF and IMF is not direct, the 
CMF remains a good metric to 
investigate the effect of 
environment on the SF process. 

The IMF and CMF are two fundamental notions 
of star formation and are prescriptions used to
• measure star formation rates 
(SFR) in galaxies
• perform galaxy and cosmology 
models.
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The origin of the initial Mass Function (IMF)

IMF

N
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CMF

0.1                      1                     10   
Core Mass (M¤)

IMF and Core Mass Function (CMF)

Cores are star progenitors

30%

If we assume that cores are star progenitors, the IMF should be 
inherited by the mass distribution of cores, the CMF.



One-to-one relationship between the CMF and IMF
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But studies in regions not typical of the main mode of star formation 
in galactic disks and limited to progenitors of <5 M¤ stars…

Surveys of the past 2 decades suggested a direct link between the IMF 
and the CMF à Fragmentation could determine stellar masses
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See also Testi & Sargent 1998; Stanke+ 2006; Alves+ 2007; Nutter & 
Ward-Thompson 2007; Enoch+ 2008; many HGBS papers; …

rr Oph CMF Aquila CMFMotte+ 1998 Könyves+ 2015



Assumptions behind the CMF/IMF comparison
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1. Measured core mass = total mass available to form a star

Ø Gas mass feeding?

Ø Multiplicity?

2. Uniform gas-to-star mass conversion, e (m) = cst

Ø Outflows regulate e?
Ø e increases with density?

3. Lifetime independent of the core mass, snapshot = true CMF

These effects should cancel out to keep the CMF/IMF shapes so similar. 
Þ conspiracy like the central limit theorem?
Þ or uncertainties of IMF and CMF observations too large?



Resolution issues for the shape of the CMF
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The peak of the CMF could correspond to the MJeans mass, or 10 x MFLC 

or could be a resolution artefact… Is the high-mass slope more robust?

CMFs of larger-scale clumps, observed in continuum and with lines,
all have a Salpeter slope @ high-mass end!

AMR simulationsAquila CMF

Louvet+ 2021

Könyves+ 2015

MJeans?
10xMFLC?

See also Reid+ 2010; Tatematsu+ 2021; Pelkonen+ 2021



ALMA-IMF clouds

Gould Belt clouds
HOBYS clouds

CygX

CMZ

W43
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Figure adapted from
Hurt & Benjamin 2008
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Targets (Motte+ 2022):

o A large sample of 

massive protoclusters

at <6 kpc

o More representative 

of Milky Way star-

forming clouds

o At various 

evolutionary stage

From the 200 most 

massive ATLASGAL 

clumps (Csengeri+ 2017)

ALMA-IMF targets: 15 massive gas-dominated 
protoclusters clouds

T. Csengeri S. Bontemps



ALMA-IMF clouds

Gould Belt clouds
HOBYS clouds

CygX

CMZ

W43

34

Figure adapted from
Hurt & Benjamin 2008
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Targets 
(Molinari+ in prep):
o A very large sample of 

massive (> 500 M¤) 

clumps @ <6 kpc

o A near and a far sample 

with d=4.7 kpc

o 0.06-400 L¤ /M¤

à Clump evolutionary 

state or its ability to form 

intermediate- or high-

mass stars

ALMAGAL targets: 1013 massive clumps



ALMA-IMF observations and database
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• Proposal: Cycle 5, #2017.1.01355.L (thanks IRAM/ARC!)
10/2017-08/2019: 69 hours 12M + 172 hours ACA + 595 hours TP

• Resolution: 0.31’’-0.87’’ ~ 2100 AU (typical ‘core’ size)
Sensitivity: 3s = 0.2 M¤¤ (1 M¤¤ @ 3mm)
Mosaics (7 to 85 fields @ 1mm ) covering protoclusters, total area ~53 pc2

• Huge effort for data calibration & reduction
Recalibration (Tsys) of line cubes (thanks JAO!)
Automatic pipeline for homogeneous and reproducible data reduction. It

combines all array configurations and 
applies phase self-calibration. https://github.com/ALMA-IMF

• Continuum images: Ginsburg+ 2022
https://zenodo.org/record/5702966#.YzWq_S2w1TY

Line data cubes (>50 Tb): Cunningham+ 2023
https://dataverse.harvard.edu/dataverse/alma-imf-line

A. Ginsburg

N. Cunningham

R. Galván-
Madrid

https://www.almaimf.com/



ALMA-IMF protoclusters, in various environments
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1.3- 8 pc2 massive clouds/clumps, 

with 2.5-21 103 M¤¤

Contours: 870 µm à massive clouds

RGB = 24µm /8µm /3.6µm à IR-bright or IR-quiet

Motte+ 2022



Protoclusters @ different evolutionary stages
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orange = thermal dust
green = diffuse free-free 
blue = strong free-free

RGB = 1.3mm / 3mm / free-free @ 3mm
(continuum)         (from H41a)

UCHII

W43-MM1, Young W43-MM3, Intermediate

Extended 
HII

G333.6, Evolved

In young and intermediate regions, thermal dust filaments dominate.
In evolved region, there is a mix between thermal dust filaments and HII regions.

ALMA-IMF: 15 clouds, 1-25 103 M¤, 5-140 104 L¤, 12-110 L¤ /M¤

Motte+ 2022

Dell’Ova+ subm

ALMAGAL 
field



Continuum emission corrected for 
COM and H41aa line emission
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orange = thermal dust
green = diffuse free-free 
blue = strong free-free

RGB = 1.3mm / 3mm / free-free @ 3mm

1.3mm + coresCores = density peaks, which are well
detected by thermal dust emission.

Cores’ flux must be corrected for
• free-free emission of ionized gas
à estimated from H41a ALMA images 
(Galván-Madrid +subm)

• line emission of, e.g., COMs

R. Galván-
Madrid

Motte+ 2022; Bonfand+ 2024
Pouteau+ 2022



Core extraction in 1.3 mm images
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2 types of continuum maps:
- cleanest = a reduced line contamination, selecting ~40 to 90% of bandwidth
- bsens-CO = the maximal sensitivity, selecting all bandwidths

2 algorithms to extract cores (density peaks) from their 
background: getsf (Men’shchikov+ 2021) and GExt2D (Bontemps+).

ÞFirst catalog of ALMA-IMF cores (Louvet+ subm)

~700 true cores (+112 free-free peaks) 
with 2700 AU sizes and 0.15-250 M¤

ÞDeeper catalogs of cores (Pouteau+ 2022; Nony+ 2023; Armante+ in 

2024; Cunningham+), using bsens-CO images and denoised images

S. Bontemps

A. 
Men’shchikov

https://www.almaimf.com/

ALMAGAL: 6303 sources
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Mass estimate of cores

We correct for the (moderate) optical depth of cores at submm l:
➝ increase the mass of 20 cores by 10 to 35%  (τ ~ 0.2-0.6)

We estimate the mean dust temperature of ALMA cores, using
1. A map of the temperature background of cores at 2.5’’,

estimated from bayesian SED fits using PPMAP (Dell’Ova+ subm)
2. An extrapolation at ~0.5’’ assuming protostar heating or core self-screening

P. Dell’Ova

Dell’Ova+ subm

Motte+ in prep



Molecular lines, the other temperature tracer
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M. Bonfand

Catalog of 68 hot core candidates 
(detected with CH3OCHO) 
associated with 2-200 M¤ cores. 
àThe 150-300 K temperatures of 

hot cores are at odds with Lbol

measurements! …

T. Csengeri

Molecular complexity studied with 
surveys of complex organic 
molecules, COMs, (Csengeri+ in prep)

Motte+ 2022; Bonfand+ 2024



Top-heavy CMFs for the W43 protoclusters
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Y. Pouteau

The 1-100 M¤ parts of the W43 CMFs are much flatter than usually found
(Motte+ 2018b; Pouteau+ 2022).

=> It would suggest an atypical IMF for stars of 0.5-50 M¤ (e=50%).

Motte+ 2018b Pouteau+ 2022

6-25 L¤ /M¤ on the clump scale



Global CMFs in all ALMA-IMF clouds
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Young::  aa=-0.84

Global CMF of ALMA-IMF 
clouds is again top-heavy!
• Young and Intermediate

CMFs are top-heavy
(like Motte+ 2018b; 
Pouteau+ 2022, 2023).

• Evolved CMF reconciles
with the Salpeter slope of 
the canonical IMF 
(like Armante+ 2024).

àCMF evolution with
time? 

Larger proportion of low-mass 
cores forming in Evolved 
clouds? 

Time 
evolution?

F. Louvet

Evolved::  aa=-1.12

Louvet+ subm

Fit using MLE (Alstott+ 2014)



Evolution of CMFs during SF bursts
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2024

2018b

Pouteau+ 2023; Armante+ 2024

7 L¤ /M¤

90 L¤ /M¤

M. Armante



W43
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PDFs with 2 power-law tails seem characteristic of 
high-mass SF clouds

Slopes suggest centrally concentrated 
ridges/hubs with atypical density 
profiles 
à Confirmed by direct measurements 
(Didelon+ 2015; Motte+ 2018).

Av ~ 14 Av ~ 140  

NGC6334

Transverse 
profile of DR21

Schneider+ 2015c; Rayner+ 2017
Motte+ 2018a

Gravity
or pressure

dominated
Turbulence
dominated

Slope 1
Slope 2

s2
S1



The more concentrated the cloud gas (SF burst), 
the flatter the CMF
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PDF of the column density in subregions

Correlation of the slopes of
• the secondary tail of NH2 PDF
• the high-mass end of the CMF

CMF of subregions

FlatterFlatter
SteeperSteeper

Pre-burst

Burst

Y. Pouteau

Pouteau+ 2023

Fit using bootstrapping & MLE



Link between the cloud PDFs and CMFs 
during SF bursts
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Pouteau+ 2023

ALMAGAL 1st

results with L/M?

Mostly low-mass, 

prestellar cores

Many high-mass 

protostellar cores1025 cm-2

1024 cm-2 10 M¤

100 M¤



Prestellar versus protostellar CMFs
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• Protostellar CMF is top-heavy
• Prestellar CMF reconciles with

the Salpeter slope of the 
canonical IMF.

àCMF evolution with time? 
Run away accretion at young
stages?

Protostellar::  aa=-0.8

Time 
evolution?

Prestellar::  aa=-1.39

T. Nony

Cores before collapse are prestellar. Cores collapsing and driving outflows (Nony+ 
2019, 2023, in prep; Towner+ 2024; Valeille-Manet + in prep) are protostellar.

Nony+ 2023
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Part IV

Observed core mass functions
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The CMF/IMF ressemblance in local clouds suggests a direct 
relationship between core mass and star mass.

But in denser, more dynamical clouds (ridges & hubs), the situation 
complexifies… 
• pre-burst à “classical” NH2 PDF à Salpeter-like CMF
• burst à more material at high NH2 à top-heavy CMF
• Post-burst à back to the “classical” NH2 PDF à Salpeter-like CMF

We must now take into account core mass growth and sub-
fragmentation to predict the resulting IMF

QUESTIONS!
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Outline / Part V

1. Introduction

2. Algorithms to identify large populations of cores

3. Variety of environment in the MW

4. Core mass functions (CMFs)

5. The resulting IMF…
• Core mass growth associated with gas flows
• Core sub-fragmentation associated with a 

fragmentation cascade



N2H
+ gas mass inflow toward cores

ALMA @10 years, December 5 2023 Frédérique Motte, IPAG 51

Cores coupled to the dense 
gas (DCN versus N2H+ VLSR).

Multiple N2H+ velocity
components within ~4 km/s.  

“v-shaped” structures in PV 
digrams (Alvarez Gutierrez et 

al.+; Sandoval Garrido+; Salinas 
Cornejo+) 

A. Stutz

“v-shaped” structures may indicate inflow. Gradients give timescales
of ~50 kyr à Core mass growth estimation and CMF evolution TBD

R. Alvarez-
Gutierrez

Alvarez Gutierrez+ 
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Hierarchical cascade of cloud fragmentation

Graph multi-scale analysis
connecting catalogs of Herschel
clumps-to-cores objects and 
Spitzer YSOs (Thomasson+ 2022).

YSOs population : ~50% located
in hierarchical structures.

Single object : 
linear structure

Network representation

Complex intrication : hierarchical structure

Thomasson+ 2022

In NGC2264, average
fragments multiplicity
(assuming fractal network): 

F ~1.45 +/- 0.12 
à ~2 children/parent at 
each scale reduction!
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Core sub-fragmentation and resulting IMF

Scenarios of core sub-fragmentation 
to predict the resulting IMF:
• Thermal Jeans fragmentation 

à out of question.
• Hierarchical cascade down to 

1000 au (Pouteau+ 2022)

• Hierarchical cascade down to 
40-100 au, with varying mass 
partition (Thomasson+)

FF=1.5 and 2:1 mass 
partition, different eecore-star

to -0.98

Pouteau+ 2022

à The CMF high-mass end could reconcile with the Salpeter slope
(Thomasson+). The fractality coefficient and mass partition needs to be
constrained in ALMA-IMF protoclusters…
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Take-away messages
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The definition of gas mass reservoirs for the formation of single 
stars/little systems is necessarily complex.

Core extraction techniques focus on local peaks in images 
tracing NH2.

The high-mass end CMF of young, massive protoclusters departs 
from the Salpeter slope. It is probably related to the gas 
distribution @ high NH2. 

Predicting the resulting IMF requires knowledge of the core mass 
growth and core sub-fragmentation.

What’s next?   ALMA @ higher resolution, M-L diagrams…
Confrontation observations/simulations

à talk to Arturo Nunez, Simon Chevalier…
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Thanks!
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Questions…


