Microphysical processes

Simon Glover

The atomic to molecular transition

- Two things that we might mean if we say that a cloud is "molecular":
 - Dominated by molecular hydrogen (H₂), not atomic H
 - Visible in CO emission
- These two things are not the same!
- Clouds detectable in CO have much more H₂ than H
- But not all clouds dominated by H₂ have significant CO

- Clouds in which n_{H2} > n_H but only a tiny fraction of total C in CO are termed diffuse molecular clouds
- These have low visual extinctions (A_V ~ 0.1 1), often large residual atomic H fractions
- Clouds with n_{H2} >> n_H, large fraction of C in CO are termed dark (or dense) molecular clouds
- These have $A_V >> 1$; average values range from 5–10 for local clouds, peak values can exceed 100

- Also sometimes talk about translucent molecular clouds
- These are intermediate between diffuse, dark clouds
- Typically $A_V \sim 1$, $n_{H2} >> n_H$ but still little CO

- Dark molecular clouds have wide range of sizes
- Small examples often referred to as **Bok globules**

Large examples are giant molecular clouds (GMCs)

- Dark clouds are opaque at optical wavelengths, bright in CO emission, so it's obvious how we detect them
- What about diffuse/translucent clouds?
- Primarily studied in absorption, particularly in UV

Rachford et al (2002)

Snow & McCall (2006)

Av

- Transition from H to H₂ does not coincide with transition of C from C⁺ to CO
- In this lecture, we'll examine why this is so
- Our starting point is the chemistry of H₂
- As we discussed earlier, in the local ISM molecular hydrogen forms primarily on the surface of dust grains
- What we didn't yet discuss is how H₂ is destroyed

- H₂ has a binding energy of ~4.5 eV
- Collisional dissociation therefore requires high T
- Dissociation rate also density-dependent:
 - v > 0 levels become populated at high n
 - Dissociation from these levels requires less energy
- This behaviour allows H₂ in dense gas to be dissociated by series of collisions, each requiring < 4.5 eV
- Don't get same behaviour at low n as excited H₂ radiatively decays before next collision

- Even in dense gas, need T >> 1000 K to get effective collisional dissociation of H₂
- In CNM, molecular clouds, T << 1000 K, so collisional dissociation is ineffective here
- Does play a role in strong shocks

• In cold gas, main destruction process is photodissociation:

 H_2 + photon \rightarrow H + H

 To understand how this takes place, we need to consider the different electronic states of H₂

Field (1966)

- Transition to ³Σ_u⁺ anti-bonding orbital needs only ~4.5eV, but is highly forbidden — negligible destruction rate
- H₂ photodissociation instead dominated by two-step
 Solomon process
- Step 1: absorption of UV photon excites H₂ molecule to Lyman (B) or Werner (C) electronic state
- This transition is allowed, hence cross-section is large
- B, C states also bound, with quantized v, J
- v, J can change during excitation: $(v, J) \rightarrow (v', J')$
- Absorption occurs in discrete spectral lines: the Lyman and Werner bands

- Step 2: radiative de-excitation from B or C state returns molecule to electronic ground state
- Most of the time (~85%), molecule ends up back in bound state (although often with high v and/or J)
- Small fraction of time (~15%), molecule ends up in vibrational continuum, leading to photodissociation
- For H₂ in vibrational ground state, minimum energy required to reach Lyman state is ~11.2 eV
- UV photons capable of exciting H₂ to Lyman or Werner states commonly referred to as Lyman-Werner photons

Pak et al (2003)

• Total H₂ photodissociation rate:

$$\zeta_{\rm diss} = \sum_{u} \frac{\pi e^2}{m_{\rm e} c^2 h} f_{lu} \lambda_{lu}^3 u_{\lambda_{lu}} p_{\rm diss,u}$$

 f_{lu} = oscillator strength of transition

$$\lambda_{lu}$$
 = wavelength of transition

 u_{λ} = radiation field energy density at that wavelength $p_{diss,u}$ = dissociation probability

• We sum here over all levels u accessible in the B, C states given our initial (v, J) in the ground state

- What makes a level accessible?
 - Energy difference < 13.6 eV higher energy photons are absorbed by atomic H, hence not available
 - Rotational selection rule: $\Delta J = 0,+1$ or -1 (plus transitions from J = 0 to J = 0 not allowed)
 - No constraint on change in v

- B, C states in H₂ are analogous to 2s, 2p in atomic H
- Higher energy bound states also exist, analogous to states with n > 2, but energy separation from ground state exceeds 13.6 eV

- H₂ can also be photoionized to H₂+ or photodissociated via single-step bound-free absorption
- However, both processes again require > 13.6 eV, hence don't occur in regions where H is present to absorb UV
- For rotationally cold H₂ (i.e. all molecules in ortho or para ground state), can easily compute photodissociation rate.
 For local value of ISRF, we find:

$$\zeta_{\rm diss} \simeq 5.6 \times 10^{-11} \, {\rm s}^{-1}$$

• Total radiative excitation rate is factor of ~7 larger

• In chemical equilibrium:

$$\zeta_{\rm diss} n_{\rm H_2} = R_{\rm H_2, dust}.$$

• Evaluating this for the local ISRF we find:

$$\frac{n_{\rm H_2}}{n_{\rm H}} = \frac{3 \times 10^{-17} (T/100)^{1/2} n}{5.6 \times 10^{-11}} \simeq 5.4 \times 10^{-7} \left(\frac{T}{100}\right)^{1/2} n.$$

- For typical CNM density, temperature, this yields an equilibrium H₂ fraction ~ 4 x 10⁻⁵
- In the diffuse ISM, destruction dominates. So how do we wind up with clouds with $n_{H2} >> n_{H}$?

- Answer: **shielding**!
- Photodissociation requires presence of UV photons at wavelengths corresponding to Lyman-Werner lines
- Photodissociation selectively removes these photons from the radiation field
- As beam of radiation propagates through a cloud containing H₂, it gradually loses the photons needed to destroy H₂
- Hence: destruction of H₂ steadily becomes less effective.
- H₂ molecules near surface of cloud shield H₂ molecules further in — process known as self-shielding

- Strong lines become optically thick before weaker lines
- Different transitions dominate H₂ photodissociation rate for different H₂ column densities
 - Strong lines dominate for low N_{H2}
 - Weak lines dominate for large N_{H2}
- Dependence of photodissociation rate on N_{H2} weaker than for process dominated by single spectral line

Draine & Bertoldi (1996)

• Define a self-shielding function f_{shield} such that:

 $\zeta_{\rm diss} = f_{\rm shield} \zeta_{\rm diss,0},$

• Simple but fairly inaccurate approximation:

$$f_{\text{shield}} = \begin{cases} 1 & \text{for } N_{\text{H}_2} < 10^{14} \,\text{cm}^{-2}, \\ (N_{\text{H}_2}/10^{14} \,\text{cm}^{-2})^{-0.75} & \text{for } N_{\text{H}_2} \ge 10^{14} \,\text{cm}^{-2}. \end{cases}$$

• More accurate approximation:

$$f_{\text{shield}} = \frac{0.965}{(1+x/b_5)^2} + \frac{0.035}{(1+x)^{0.5}} \exp\left[-8.5 \times 10^{-4} (1+x)^{0.5}\right],$$

where $x = N_{H2} / 5 \times 10^{14} \text{ cm}^{-2}$, $b_5 = b / 10^5 \text{ cm} \text{ s}^{-1}$

- One additional complication: absorption by dust
- Dust absorption cross-section in LW bands:

 $\sigma_d \approx 2 \times 10^{-21} \ cm^2$

- Importance of dust absorption depends on total column density required for H → H₂ transition
- Column density required depends on strength of radiation field — dust plays greater role when radiation field strong

 $A_V \sim 0.25 \tau_{H2}$

McKee & Krumholz (2010)

 In self-shielding dominated regime, equilibrium H₂ fraction given approximately by:

$$\frac{n_{\rm H_2}}{n_{\rm H}} = \frac{3 \times 10^{-17} (T/100)^{1/2} n}{5.6 \times 10^{-11} f_{\rm shield}},$$

$$\simeq 1.7 \times 10^{-17} \left(\frac{T}{100}\right)^{1/2} n N_{\rm H_2}^{0.75}.$$

• If cloud has radius L, with $N_{H2} = n_{H2} L$ at centre, then:

$$n_{\rm H_2} = 2.4 \times 10^{-12} \left(\frac{T}{100}\right)^2 n^4 n_{\rm H}^4 L_{\rm pc}^3,$$

- H₂ fraction is a very steep function of number density, cloud size
- Expect rapid transition from optically thin regime with very low H₂ fraction to self-shielded regime with x_{H2} ~ 1
- Can test this observationally using UV absorption spectroscopy to measure H₂, H column densities
- First done in Milky Way in 1970s by Copernicus satellite, more recently for MW, LMC, SMC by FUSE

E'(B-V)_{crit} ~ 0.07

Tumlinson et al (2002)

Bigiel et al (2008)

- Does H₂ fraction actually reach equilibrium in the ISM?
- At typical CNM density, H₂ formation time ~ 10 Myr
- Turbulence accelerates this by creating transient density enhancements, can reduce timescale by factor of few
- For comparison: free-fall collapse time ~ 5 Myr
- H₂ fraction may be out of equilibrium in CNM, but not wildly so — equilibrium results good guide to behaviour

- But this is at solar metallicity. What happens at low metallicity?
- Formation time inversely proportional to dust abundance
- If dust abundance ~ metallicity, formation time increases as 1/Z
- At low Z, evidence for steeper dependence of dust abundance on metallicity, so this probably underestimates t_{form} in low Z systems
- At sufficiently low Z, equilibrium not guaranteed collapse and star formation may occur in H-dominated regime

Simulated star-forming cloud in galaxy with $Z = 0.03 Z_{sun}$

CO formation

• As with H₂, the simplest way to form CO in the ISM is via radiative association:

$C + O \rightarrow CO + photon$

- However, this reaction is slow (albeit not as slow as the corresponding reaction for H₂), hence usually unimportant
- CO formation is instead dominated by a variety of gasphase ion-neutral reactions

- At first glance, this complexity is rather daunting
- In practice, not all of these reactions are equally important, so safe to focus on a few of the key chains
- First of these involves hydroxyl (OH). One way to form this is the chain:

$$O^{+} + H_{2} \rightarrow OH^{+} + H,$$

$$OH^{+} + H_{2} \rightarrow H_{2}O^{+} + H,$$

$$H_{2}O^{+} + H_{2} \rightarrow H_{3}O^{+} + H,$$

 H₃O⁺ doesn't react further with H₂, but destroyed by dissociative recombination:

$$H_3O^+ + e^- \rightarrow OH + (H_2 \text{ or } H + H)$$

• Alternatively, we can form OH starting with:

$$\begin{array}{rcl} \mathrm{O} + \mathrm{H}_3^+ & \rightarrow & \mathrm{OH}^+ + \mathrm{H}_2, \\ \mathrm{O} + \mathrm{H}_2^+ & \rightarrow & \mathrm{OH}^+ + \mathrm{H} \end{array}$$

- OH+ ions formed via one of these reactions then follow same pathway as above
- OH is an interesting ISM tracer in its own right, but is also a stepping stone to CO:

$$C^{+} + OH \rightarrow CO^{+} + H,$$

$$CO^{+} + H_{2} \rightarrow HCO^{+} + H,$$

$$HCO^{+} + e^{-} \rightarrow CO + H.$$

 If carbon is present as C rather than C+, can also form CO directly from OH via:

```
\mathrm{C} + \mathrm{OH} \rightarrow \mathrm{CO} + \mathrm{H}.
```

- All of these reactions are non-radiative and exothermic (i.e. they produce energy).
- In every case, p_{react} ~ 1 and the reactions proceed at rates close to the collision rate
- Typical reaction rate coefficients at 100 K range from ~10⁻⁶ cm³ s⁻¹ for dissociative recombination to ~10⁻¹¹ cm³ s⁻¹ for neutral-neutral reactions such as C + OH

- In each version of the OH pathway, rate-limiting step for forming OH is formation of the initial ion (O⁺, H₂⁺ or H₃⁺)
- Main source: cosmic ray ionisation
- Cosmic ray ionisation produces O⁺ and H₂⁺ ions at a total rate ~ 2 × 10⁻¹⁵ s⁻¹
- Most H₂⁺ immediately destroyed by the reaction:

```
H_2 + H_2^+ \rightarrow H_3^+ + H
```

 Some fraction of O⁺, H₃⁺ ions resulting from cosmic ray ionisation then react to form OH⁺, initiating pathway to OH

- How large is this fraction?
- For O⁺, reaction with H₂ is main destruction mechanism in gas with $n_{H2} > n_{H}$, so fraction ~ 1
- For H_{3^+} , dissociative recombination is far more effective than reaction with O fraction ~ 0.01 (x₀ / x_e)
- If we assume all OH converted to CO, then net CO formation rate per unit volume is:

 $R_{\rm CO} = 4 \times 10^{-18} \zeta_{\rm H,16} n_{\rm H_2} \,\,{\rm cm}^{-3}\,{\rm s}^{-1},$

• Corresponding CO formation timescale:

 $t_{\rm form,CO} \simeq 1.0 \, x_{\rm H_2}^{-1} \zeta_{\rm H,16}^{-1} \, \text{Myr},$

- CO can also form via several reaction chains starting from CH⁺ or CH₂⁺ ions
- Unlike OH+, these ions are primarily formed via radiative association of C+ with H or H₂:

$$C^{+} + H \rightarrow CH^{+} + \gamma$$

$$C^{+} + H_{2} \rightarrow CH_{2}^{+} + \gamma.$$

- In CNM conditions, resulting CO formation rate is same order of magnitude as that due to OH⁺ and OH
- Both routes also depend crucially on presence of H₂

- Important points to take away from this analysis:
 - 1) CO formation occurs in less than one dynamical time in moderate density gas (n ~ 1000 cm⁻³ or less)
 - 2) CO formation requires the presence of H₂
 - 3) Point (2) implies that the most important chemical timescale for GMCs is the H₂ formation timescale

CO destruction

- As with H₂, collisional dissociation of CO is highly endothermic and hence important only at high T
- At low T and low column densities, destruction of CO is dominated by photodissociation
- CO photodissociation differs from H₂, occurs via a process known as predissociation

- Key differences to H₂ photodissociation:
 - Transition to unbound state highly likely, so $p_{diss} \sim 1$
 - Excited state very short-lived, so lines are broad

- Similarities to H₂ photodissociation:
 - Line-driven process, hence self-shielding is possible
 - Requires UV photons, minimum energy 11.5eV

- In practice, CO self-shielding not very efficient
- Two main reasons for this:
 - Absorption lines often broader than for H₂, hence need more column density to produce $\tau \sim 1$
 - CO column densities << H₂ column densities in fully molecular gas, since C, O much less abundant than H
- CO shielding dominated by dust, although also a significant contribution from H₂
- In typical CNM conditions, require $A_V \sim 1-2$ in order to make photodissociation rate smaller than formation rate

- Therefore expect transition from C⁺ to CO to occur at approximately this visual extinction
- Cf. the transition from H to H_2 , which requires $A_V \sim 0.1$
- This mismatch between the column densities required for efficient shielding of H₂, CO explains existence of two classes of molecular clouds
- Diffuse, translucent clouds have high enough column density to shield H₂ but not CO
- GMCs shield both molecules effectively in their interiors

Pineda et al (2008)

Simulation results for clouds of varying metallicity

- Outer regions of GMCs have $A_V < 1$
- Expect these regions to be dominated by H₂ but to have very little associated CO — CO-dark molecular gas
- For the Milky Way, CO-dark H₂ associated with GMCs is around 10-20% of total
- Total fraction of CO-dark gas (including diffuse, translucent clouds) much higher, but uncertain
- At low Z, these numbers are much, much larger

- At high A_V, CO well-shielded from external radiation field
- CO in these regions can still be destroyed by cosmic rays
- Direct ionization of CO by cosmic rays ineffective, since resulting CO⁺ ions quickly reform CO
- More effective: dissociative charge transfer with He+

He + c.r.
$$\rightarrow$$
 He⁺ + e⁻,
He⁺ + CO \rightarrow He + C⁺ + O.

 When cosmic ray fluxes are very large, this may strongly suppress CO fraction

- CRs also destroy CO via the **Prasad-Tarafdar mechanism**
- As previously mentioned, cosmic ray ionization produces energetic electrons
- These electrons can lose energy by exciting higher electronic states in H, H₂
- Decay of these states to the ground state produces local flux of UV photons
- These photons can then photodissociate CO

Atomic carbon

- In our discussion of CO formation and discussion, we've largely ignored atomic carbon (C)
- In CNM, C abundance set by balance between radiative recombination of C⁺

$$C^+ + e^- \rightarrow C + photon$$

and photoionization of C:

 $C + photon \rightarrow C^+ + e^-$

• At a typical CNM temperature of 60 K, the recombination rate is approximately:

$$R_{\rm rec,C^+} \simeq 1.2 \times 10^{-11} n_{\rm C^+} n_{\rm e^-} \,{\rm cm^{-3} \, s^{-1}}$$

• For the local ISRF, the photoionization rate is

$$R_{\rm pi,C} = 3.5 \times 10^{-10} \exp\left(-3.76A_{\rm V}\right) n_{\rm C} \,\mathrm{cm}^{-3} \,\mathrm{s}^{-1}$$

 Equating these, we find that the equilibrium C⁺ / C ratio is given by:

$$\frac{n_{\rm C}}{n_{\rm C^+}} = 3.4 \times 10^{-2} n_{\rm e^-} \exp\left(+3.76A_{\rm V}\right)$$

- For densities, fractional ionizations typical of the CNM, we get C/C⁺ \sim 1 for A_V \sim 2
- Transition from C⁺ to C occurs in similar conditions to transition from C to CO
- C should form a "skin" around regions traced by CO
- Is this what we see?

Bolatto et al (1999)

- Observations don't look much like onion-skin toy model
- Why? Because clouds have substructure
- [CI] emission traces envelopes of many small-scale clumps, filaments within GMC
- When smoothed, result is that [CI] emission traces optically thin CO emission well
- We can reproduce this behaviour well in models that account for cloud substructure

- If [CI] traces cloud structure as well as CO, why don't we use [CI] as our main tracer of molecular gas?
- Answer: the atmosphere much harder to observe the [CI] 1-0 line at 609µm than the CO 1-0 line at 2.6 mm

Casey et al (2014)

Summary

- H₂ forms primarily on dust grain surfaces
- CO forms in gas phase, via ion-neutral chemistry, largely driven by cosmic ray ionization
- H₂ destroyed by two-step Solomon process (line-driven, but only ~15% of absorptions lead to dissociation)
- CO destroyed by predissociation (still line driven, but more effective than the Solomon process)
- Shielding of H₂ dominated by self-shielding, dust
- Shielding of CO dominated by dust

- Transition from H to H₂ occurs once gas sufficiently shielded that destruction rate ~ formation rate
- In the local ISM, this requires $A_V \sim 0.1$
- Transition from C+/C to CO requires more dust shielding, occurs at $A_V \sim 1\,-\,2$
- Difference in critical A_V → existence of CO-dark H₂ (diffuse & translucent clouds, envelopes of GMCs)
- Transition from C⁺ to C requires A_V only slightly smaller than for transition to CO — C traces CO in GMCs

Snow & McCall (2006)

Av

Snow & McCall (2006)

Av

- Classic layered photodissociation region (PDR) structure good description of behaviour of slabs, spheres
- Real GMCs are clumpy, so don't look much like this idealized structure
- However, we do see something like this if we zoom in on individual substructures
Example: the Orion Bar

Credit: NASA/ESA/M. Robberto

Example: the Orion Bar

Credit: NASA / O'Dell & Wong

Green: [SII] 6731Å Blue: [OI] 6300 Å Red: HCO+ J=3-2