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cover	onset	of	primordial	star	formation	to	early	reionization
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Jeans (1902, PTRS A, 199,1), Rees & Ostriker (1977, MNRAS,179, 541), Silk (1977, ApJ, 211, 638) 

criteria	for	primordial	star	formation	
• DM	halos	need	to	decouple	from	cosmic	expansion	and	start	to	contract	
• gas	needs	to	decouple	and	go	into	run-away	collapse	
—>	Jeans	criterion:				 	

• in	addition,	gas	needs	to	cool	away	compression	heat	
—>	Rees-Ostriker	criterion:				 	

• both	depend	on	thermodynamic	response	of	the	gas	
—>	competition	between	heating	and	cooling	processes	
—>	importance	of	chemistry	

• collapse	needs	to	proceed	to	stellar	densities

τgrav < τsound

τcool < τdyn

DM potential well

gas cools  
and flows in

run-away  
collapse  

DM potential well DM potential well

star formation sets in
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criteria	for	collapse	and	star	formation	
• look	at	competition	between	gravity	(density	 )	and	gas	pressure		
(sound	speed	 	or	temperature	 ):	Jeans	mass	

• critical	mass:		

	

• can	be	extended	by	considering	effective	sound	speed	
			with	 			or			 	

• in	standard	LCDM	a	low	redshift	this	translates	to	
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Jeans (1902, PTRS A, 199,1), Barkana & Loeb (2001, Phys. Rep. 349, 125), Glover (2013, ASSL, 396, 103)

The First Stars 3

where Wm is the dimensionless cosmological matter density parameter, and h is the
value of the Hubble constant in units of 100 km s�1 Mpc�1. In the low redshift limit
(where the coupling between radiation and matter is weak and the gas temperature
evolves adiabatically), the Jeans mass is given instead by

MJ = 5.18⇥103
✓

Wmh
2

0.15

◆�1/2✓ Wbh
2

0.026

◆�3/5✓1+ z

10

◆3/2
M�, (4)

where Wb is the dimensionless cosmological baryon density parameter. The evolu-
tion of MJ with redshift is also illustrated in Figure 1.

Fig. 1 Evolution with redshift of the Jeans mass (solid line), the filter mass computed in the limit
where the relative streaming velocity between gas and dark matter is zero (dashed line) and the
filter mass computed assuming a streaming velocity v = svbc (dash-dotted line). Also plotted is
the critical minihalo mass, Mcrit, required for efficient H2 cooling (dotted line). The estimate of
the filter mass in the no streaming limit comes from Naoz & Barkana (2007), who account for a
number of effects not treated in the original Gnedin & Hui (1998) formulation, while the estimate
of MF in the streaming case comes from Tseliakhovich, Barkana & Hirata (2011). The value of
Mcrit was computed using Equation 38.

A more careful treatment of the growth of linear density perturbations accounts
for the fact that the sound speed, the Jeans length and potentially also the Jeans mass

MJeans

Mcool
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Klessen & Glover (2023, ARAA, 61, 65 -- arXiv.2303.12500)

different	models	
yield	different	Mcrit
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Klessen & Glover (2023, ARAA, 61, 65 -- arXiv.2303.12500)

including	cosmic	
Lyman-Werner	
radiation	adds		
further	complexity



criteria	for	collapse	and	star	formation	
• this	is	not	sufficient,	gas	als	needs	to	cool	away	access	heat:	cooling	mass	
• efficient	cooling	requires	molecular	hydrogen;	with	H2	we	reach	T	~	500	K	
and	with	HD	down	to	T	~	100	K	(but	typically	not	important)		

• H2	typically	needs	free	electrons	as	catalyst:	
		and		 	

• less	important:	 		and			 	
• and	at	high	densities	( )	via	the	3-body	path:	

	

• as	result:	
	

	

H + e− → H− + γ H− + H → H2 + e−

H + H+ → H+
2 + γ H+

2 + H → H2 + H+

n ≲ 109cm−3

H + H + H → H2 + H

Mcool ≈ 6 × 105M⊙ h−1Ω−1/2
m ( μ

1.22 )
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( z + 1
10 )

−3/2
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Glover (2005, SSRv.,117, 445), Glover (2013, ASSL, 396, 103)
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where Wm is the dimensionless cosmological matter density parameter, and h is the
value of the Hubble constant in units of 100 km s�1 Mpc�1. In the low redshift limit
(where the coupling between radiation and matter is weak and the gas temperature
evolves adiabatically), the Jeans mass is given instead by

MJ = 5.18⇥103
✓

Wmh
2

0.15

◆�1/2✓ Wbh
2

0.026

◆�3/5✓1+ z
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where Wb is the dimensionless cosmological baryon density parameter. The evolu-
tion of MJ with redshift is also illustrated in Figure 1.

Fig. 1 Evolution with redshift of the Jeans mass (solid line), the filter mass computed in the limit
where the relative streaming velocity between gas and dark matter is zero (dashed line) and the
filter mass computed assuming a streaming velocity v = svbc (dash-dotted line). Also plotted is
the critical minihalo mass, Mcrit, required for efficient H2 cooling (dotted line). The estimate of
the filter mass in the no streaming limit comes from Naoz & Barkana (2007), who account for a
number of effects not treated in the original Gnedin & Hui (1998) formulation, while the estimate
of MF in the streaming case comes from Tseliakhovich, Barkana & Hirata (2011). The value of
Mcrit was computed using Equation 38.

A more careful treatment of the growth of linear density perturbations accounts
for the fact that the sound speed, the Jeans length and potentially also the Jeans mass

MJeans

Mcool
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primordial	chemistry	networks	largely	focus	on	H2	as	primary	coolants	

Bovino & Galli (2019, in Formation of the First Black Holes, eds. Latif M. and Schleicher D.R.G),  
using KROME, see Grassi et al. (2014, MNRAS, 439, 2386) 
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equation of state

effective	EOS	constitutes	a	relation	
between	temperature	and	density	

(A) gas	flows	into	potential	well		
and	is	compressionally	heated	

(B) H2	formation	and	run-away	cooling	
(C) gas	accumulates	and	collapse	resumes	
(D) 3-body	H2	formation	sets	in		

and	gas	becomes	fully	molecular	
(E) gas	becomes	optically	thick		

and	temperature	rises	further	
(F) collision-induced	emission	(CIE)	

becomes	important	coolant	
(G) at	T	~	2000	K	H2	dissociation	

sets	in	

Klessen & Glover (2023, ARAA, 61, 65 -- 
arXiv.2303.12500) 
inspired by Yoshida et al. (2006, ApJ, 652, 6)  
using data of Lewis Prole and Anna Schauer
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Physical Processes in the Interstellar Medium 47

16 S. C. O. Glover and P. C. Clark

Figure 7. Median heating and cooling rates per unit volume in run B, plotted as a function of the hydrogen nuclei number density n, at a time just before the
onset of star formation.

Figure 8. As Fig. 7, but for run D2.

Fig. 8 shows that in the MC, a number of additional processes
come into play: H2 and CO provide additional cooling channels
through their rotational line emission, but the presence of H2 also in-
troduces additional heating processes such as H2 photodissociation
heating (Black & Dalgarno 1977), or heating due to the pumping
of highly excited vibrational levels of H2 by UV photons (Burton,
Hollenbach & Tielens 1990). Nevertheless, despite the additional
complexity, we can again identify three main regimes marked out
by different dominant processes. At n < 1000 cm−3, the behaviour
is very similar to that in the atomic run: C+ is the dominant coolant,
while most of the heating comes from photoelectric emission from
dust. Above n = 1000 cm−3, C+ quickly gives way to CO as the
dominant coolant, reflecting the fact that the gas becomes CO dom-
inated at around this density (see Fig. 5), and the photoelectric
heating rate also begins to fall off with increasing density. The fact
that these changes occur at a very similar density is no coincidence:
the photoelectric heating rate and the CO photodissociation rate
have a very similar dependence on the visual extinction of the gas,
and so both become unimportant at roughly the same point. CO re-
mains the dominant coolant between n = 1000 and ∼105 cm−3, but
photoelectric heating quickly becomes irrelevant, and dissipation in
shocks becomes the main source of heat. Finally, at n > 105 cm−3,

dust takes over from CO as the most important coolant, and pdV
heating becomes almost as important as shock heating.

Fig. 8 also illustrates that cooling by H2 is never particularly
important: at best, it contributes only a few per cent of the total
cooling rate, and at most densities contributes far less than this. In
addition, it demonstrates that H2 formation heating is unimportant
in run D2, which is unsurprising given the fully molecular initial
conditions used for this run. A similar plot for run D1 would show
a much larger contribution from H2 formation heating at densities
between n = 103 and 104 cm−3.

If we compare Figs 7 and 8, we can see why the presence of
H2 and CO appears to have such a limited effect on the behaviour
of the cloud. Below n = 1000 cm−3 (which is, let us not forget,
more than three times higher than the initial mean density of the
gas), the cooling is dominated by C+ in both simulations, and so H2

and CO have very little influence on the thermal behaviour of the
gas. At higher densities, CO takes over from C+ as the dominant
coolant in run D2. However, if we compare the CO cooling rate at
e.g. n = 104 cm−3 in run D2 with the C+ cooling rate at the same
density in run B, we see that they are surprisingly similar – the
C+ cooling rate is smaller than the CO cooling rate, but only by
a factor of 2–3, despite the much larger energy required to excite

C⃝ 2012 The Authors, MNRAS 421, 9–19
Monthly Notices of the Royal Astronomical Society C⃝ 2012 RAS

Fig. 7 Overview of the main heating and cooling processes plotted as a function of the hydrogen
nuclei number density n calculated from a simulation of molecular cloud formation from initially
atomic gas in the solar neighborhood. Adopted from Glover & Clark (2012a).

adiabatic compression of the gas, dissipation of turbulent kinetic energy in shocks
and cosmic ray ionization heating – become more important at n ∼ 6000 cm−3 and
above. Finally, at densities above about 105 cm−3, the gas couples to the dust (Sec-
tion 3.5), which acts as a thermostat and provides most of the cooling power. Weak
shocks and adiabatic compressions together dominate the heating of the gas in this
regime, each contributing close to half of the total heating rate (for a more detailed
discussion, see Glover & Clark, 2012a).

The rate at which turbulent kinetic energy is dissipated in regions where the tur-
bulence is supersonic is well established (Mac Low et al., 1998; Stone et al., 1998;
Mac Low, 1999). The energy dissipation rate within a cloud of mass M and velocity
dispersion σ can be written to within a factor of order unity as (Mac Low, 1999)

Ėkin ∼−Mkdσ3, (102)

where kd is the wavenumber on which energy is injected into the system. If we
assume that this is comparable to the size of the cloud (see e.g. Brunt et al., 2009),
and adopt Larson’s relations between the size of the cloud and its velocity dispersion
and number density (Larson, 1981), then we arrive at an average turbulent heating
rate (Pan & Padoan, 2009)

Γturb = 3×10−27
(

L
1 pc

)0.2
n erg s−1 cm−3. (103)

This heating rate is of a similar order of magnitude to the cosmic ray heating rate.
Unlike cosmic ray heating, however, turbulent heating is highly intermittent (Pan &
Padoan, 2009). This means that in much of the cloud, the influence of the turbulent

(Klessen, & Glover (2016, SAAS, 43, 85), figure from Glover & Clark (2012, MNRAS, 421, 9 )

overview	of	main	heating	and	cooling	processes		
as	function	of	hydrogen	nuclei	number	density	n



ga
la

ct
ic 

ce
nt

er
so

m
e 

th
eo

ry
heating and cooling 
processes at Z ~ 0

Klessen, & Glover (2023, ARAA, 61, 65 -- arXiv.2303.12500)

overview	of	main	heating	and	cooling	processes		
as	function	of	hydrogen	nuclei	number	density	n
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this	can	be	combined	with		
simple	1D	collapse	calculations	
and	looking	at	the	density	and	
temperature	in	the	central	core
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Figure 1. Evolution of temperatures in prestellar cloud cores with metallicities
Z/Z⊙ = 0, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, and 1, as functions of the
number density, which is calculated by one-zone models. The dashed lines
indicate the constant Jeans masses. For those above 102 M⊙ (below 1 M⊙), the
gas is assumed to be fully atomic (molecular) in drawing those lines.
(A color version of this figure is available in the online journal.)

3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its
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Z/Z⊙ = 0, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, and 1, as functions of the
number density, which is calculated by one-zone models. The dashed lines
indicate the constant Jeans masses. For those above 102 M⊙ (below 1 M⊙), the
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3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

τ	=	1
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3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its
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3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its
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3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its
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gas is assumed to be fully atomic (molecular) in drawing those lines.
(A color version of this figure is available in the online journal.)

3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its
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indicate the constant Jeans masses. For those above 102 M⊙ (below 1 M⊙), the
gas is assumed to be fully atomic (molecular) in drawing those lines.
(A color version of this figure is available in the online journal.)

3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

102Msun 1 Msun 10-2Msun

τ	=	1

Z = 0• slope of EOS in the density range 5 
cm-3 ≤ n ≤ 16 cm-3 is γ≈1.06.

• with non-zero angular momentum, 
disk forms.

• disk is unstable against frag- 
mentation at high density
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Figure 1: Density evolution in a 120 AU region around the first protostar, showing the build-up
of the protostellar disk and its eventual fragmentation. We also see ‘wakes’ in the low-density
regions, produced by the previous passage of the spiral arms.
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Clark et la. (2011, Science,  331, 1040)
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Greif et al. (2012, MNRAS, 424, 399)
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(with hint for top-heaviness)

Greif et al. (2011, ApJ, 737, 75), Clark et al. (2011, Science, 331, 1040), Smith et al. (2011, MNRAS, 414, 3633), 
Dopcke et al. (2013, ApJ, 766, 103), Hirano et al.  (2014, ApJ, 781, 60), Tanaka & Omukai (2014, MNRAS, 439, 
1884), Nakauchi et al. (2014, MNRAS, 442, 2667), Wollenberg et al. (2020, MNRAS, 494, 1871), Prole et al. (2022, 
MNRAS, 510, 4019), Prole et al. (2022, MNRAS, 516, 2223), and many more
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Figure 5. Initial mass functions at C ⇠ 400 years after the formation of the first
sink. The distribution of masses shifts towards lower values with increasing
dsink. The shaded sections of the IMFs represent sinks ejected from the group,
given by the criteria described in Section 4. The black vertical dashed lines
show the Jeans mass at the sink particle creation density. The IMF for the
high velocity (U = 0.25) run is given in a separate panel at the bottom. Note
that for dsink = 10�10 � 10�8 g cm�3 there are no ejections.

Figure 6. Evolution of the IMF and cumulative mass function at times 10,
50, 100, 200, 300 and 400 yr after the formation of the fist sink, for dsink =
10�6 g cm�3. The IMFs combine the sinks from the U = 0.25 and U = 0.05
runs.

Figure 7. Cumulative number of sink particle mergers plotted against time
across all velocity seeds.

Figure 8. Radial profiles of the ratio of angular to total velocity in the initial
velocity field, around the region where sink particles later form.

most of the ejected sinks, accretion will only be significant close to
the centre of the halo. The Bondi-Hoyle accretion rate is given by

§" = 4c(⌧")2d/(22
B + E2)3/2, (4)

where " is the sink mass, d is the gas density, 2s is the sound speed
and E is the velocity of the sink relative to the gas. If E � Eesc,
then it follows that E � 2s and that the velocity of the sink will not
significantly change as it makes its way out of the halo. Therefore, it
follows that

§" / d. (5)

Previous work has shown that d / A�2.2 (e.g. Yoshida et al. 2006),
so for a constant velocity,

§" / C�2.2. (6)

The mass accretion rate therefore drops rapidly with time and the total
mass accreted is dominated by accretion close to t = 0. Therefore, the
mass that the ejected protostars have accreted in the region that we
simulate is the majority of the mass they are ever going to accrete.
Hence even if we were to account for the gas on scales larger than
a few pc in the minihalo, this would not significantly a�ect our
conclusion regarding the masses of the ejected protostars.

MNRAS 000, 1–12 (2020)

Prole et al. (2022, MNRAS, 510, 4019)

simulations suggest IMF of metal-free stars is log flat 
(with hint for top-heaviness)
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given by the criteria described in Section 4. The black vertical dashed lines
show the Jeans mass at the sink particle creation density. The IMF for the
high velocity (U = 0.25) run is given in a separate panel at the bottom. Note
that for dsink = 10�10 � 10�8 g cm�3 there are no ejections.

Figure 6. Evolution of the IMF and cumulative mass function at times 10,
50, 100, 200, 300 and 400 yr after the formation of the fist sink, for dsink =
10�6 g cm�3. The IMFs combine the sinks from the U = 0.25 and U = 0.05
runs.

Figure 7. Cumulative number of sink particle mergers plotted against time
across all velocity seeds.

Figure 8. Radial profiles of the ratio of angular to total velocity in the initial
velocity field, around the region where sink particles later form.

most of the ejected sinks, accretion will only be significant close to
the centre of the halo. The Bondi-Hoyle accretion rate is given by

§" = 4c(⌧")2d/(22
B + E2)3/2, (4)

where " is the sink mass, d is the gas density, 2s is the sound speed
and E is the velocity of the sink relative to the gas. If E � Eesc,
then it follows that E � 2s and that the velocity of the sink will not
significantly change as it makes its way out of the halo. Therefore, it
follows that

§" / d. (5)

Previous work has shown that d / A�2.2 (e.g. Yoshida et al. 2006),
so for a constant velocity,

§" / C�2.2. (6)

The mass accretion rate therefore drops rapidly with time and the total
mass accreted is dominated by accretion close to t = 0. Therefore, the
mass that the ejected protostars have accreted in the region that we
simulate is the majority of the mass they are ever going to accrete.
Hence even if we were to account for the gas on scales larger than
a few pc in the minihalo, this would not significantly a�ect our
conclusion regarding the masses of the ejected protostars.

MNRAS 000, 1–12 (2020)

Prole et al. (2022, MNRAS, 510, 4019)

Rotation, turbulence and Pop. III star formation 15

Figure 8. The protostellar mass functions produced in the simulations when the total mass in sinks has reached ⇠ 36M� in each

realization of each setup. Each row represents a di↵erent setup. The first five columns show the mass function for each of the individual

realizations. The last column shows the combined mass function for each setup, which is derived by summing up the contributions of all

individual realizations per setup. The choice of color for the realizations is the same as in Figures 2 and 3. The combined mass functions

are all relatively flat, although they tend to be somewhat more top-heavy for runs with no initial turbulence. It is also clear that there

is considerable variation between the mass functions recovered for di↵erent realizations of the same initial setup.

© 2019 RAS, MNRAS 000, 1–25

Wollenberg et al. (2020, MNRAS, 494, 1871)

simulations suggest IMF of metal-free stars is log flat 
(with hint for top-heaviness)
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dsink. The shaded sections of the IMFs represent sinks ejected from the group,
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show the Jeans mass at the sink particle creation density. The IMF for the
high velocity (U = 0.25) run is given in a separate panel at the bottom. Note
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most of the ejected sinks, accretion will only be significant close to
the centre of the halo. The Bondi-Hoyle accretion rate is given by

§" = 4c(⌧")2d/(22
B + E2)3/2, (4)

where " is the sink mass, d is the gas density, 2s is the sound speed
and E is the velocity of the sink relative to the gas. If E � Eesc,
then it follows that E � 2s and that the velocity of the sink will not
significantly change as it makes its way out of the halo. Therefore, it
follows that

§" / d. (5)

Previous work has shown that d / A�2.2 (e.g. Yoshida et al. 2006),
so for a constant velocity,

§" / C�2.2. (6)

The mass accretion rate therefore drops rapidly with time and the total
mass accreted is dominated by accretion close to t = 0. Therefore, the
mass that the ejected protostars have accreted in the region that we
simulate is the majority of the mass they are ever going to accrete.
Hence even if we were to account for the gas on scales larger than
a few pc in the minihalo, this would not significantly a�ect our
conclusion regarding the masses of the ejected protostars.
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Figure 8. The protostellar mass functions produced in the simulations when the total mass in sinks has reached ⇠ 36M� in each

realization of each setup. Each row represents a di↵erent setup. The first five columns show the mass function for each of the individual

realizations. The last column shows the combined mass function for each setup, which is derived by summing up the contributions of all

individual realizations per setup. The choice of color for the realizations is the same as in Figures 2 and 3. The combined mass functions

are all relatively flat, although they tend to be somewhat more top-heavy for runs with no initial turbulence. It is also clear that there

is considerable variation between the mass functions recovered for di↵erent realizations of the same initial setup.

© 2019 RAS, MNRAS 000, 1–25

Wollenberg et al. (2020, MNRAS, 494, 1871)

The Astrophysical Journal, 781:60 (22pp), 2014 February 1 Hirano et al.

(a) (b) (c)

Figure 4. Expanding H ii regions around the primordial protostar for three in our sample of 110 clouds (the same ones as in Figure 12). We show the structure and
the evolution of the accreting gas from left to right. The plotted regions are cubes with 60,000 AU on a side. The colors indicate gas temperature and the contours
show the density structure. The main accretion takes place through the accretion disk on the equatorial plane. As the central protostar becomes more massive and the
surface temperature increases, the ionizing photon production of the central star increases. H ii regions are launched into the polar direction and the opening angles
grow with time, eventually stopping the accretion.
(A color version of this figure is available in the online journal.)
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Figure 5. Final distribution of the calculated stellar masses for our 110 first stars.
The red, blue, and black histograms represent the different paths of protostellar
evolution: P1: KH contracting protostar (red), P2: oscillating protostar (blue),
and P3: supergiant protostar (black). See the text in Section 2.2.1 for details.
P1hd refers to the cases in which the gas clouds are formed by HD cooling
and evolve on low-temperature tracks. P3p (predicted) indicates the same cases
as P3, except that the final masses are calculated from a correlation between
the properties of the cloud and the resulting stellar mass (Equation (13); see
Appendix B).
(A color version of this figure is available in the online journal.)

to 1621 M⊙. However, the bulk of them are distributed around
several tens or a few hundreds of solar masses. We study the
origin of this distribution in Section 4 in detail. Here we merely
note that the distribution of stellar masses does not mirror the
distribution of dark matter halo masses.

3.2. Evolution in the Early Collapse Stage

3.2.1. Runaway Collapse of the Clouds

In this section we describe the early evolution of the star-
forming clouds up to the moment when a central hydrostatic
core is formed by considering the fate of nine representative
cases. Figure 6 shows that the gravitational collapse of a pri-
mordial cloud proceeds in the well-known self-similar man-
ner. The cloud has a central collapsing core and a surrounding
envelope during the collapse. Where the collapsing core has an
approximately homogeneous density distribution, the envelope
develops a power-law profile, nH ∝ R−2.2 (e.g., Omukai & Nishi
1998; Ripamonti et al. 2002). Figure 6 also shows the radially
averaged density profiles in the nine different clouds at the time
when the central density reaches 1012 cm−3. We see that densi-
ties at the same radial distance can differ among the clouds by
more than a factor of ten. The variation of the density structure
is attributed to the different thermal evolution during the col-
lapse (see Section 3.2.2). Some bumps in the density profiles
indicate the presence of neighboring density peaks, large disk-
or bar-like structures, or fragmented clumps in the collapsing
clouds. We discuss these cases further in Section 5.2.2.

6

Hirano et al.  (2014, ApJ, 781, 60)

simulations suggest IMF of metal-free stars is log flat 
(with hint for top-heaviness)
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simulations suggest IMF of  
metal-free stars is log flat 
(meaning it is top heavy) 
 
 
 
BUT: result depends strongly  
on numerical resolution, and 
on the physics involved, and 
on the way feedback is taken 
into account. 

(Klessen, & Glover (2023, ARAA, 61, 65 -- 
arXiv.2303.12500)
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Pop	III	stars	are	typically	more	compact	and	
hotter	than	their	Pop	II/I	counterparts.	But	
they	have	similar	bolometric	luminosity.	

Klessen, & Glover (2023, ARAA, 61, 65 -- 
arXiv.2303.12500)
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Klessen, & Glover (2023, ARAA, 61,65  -- 
arXiv.2303.12500) 
based on data by Murphy et al. (2021, 
MNRAS 501, 2745, 2021, MNRAS, 506,  
5731) and Ekström et al. (2012, A&A, 537, 
A146)
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arXiv.2303.12500)

Table A1: Key stellar properties and production rates of ionizing and non-ionizing photons as function of stellar mass and metallicity

Z rot M age T⇤ L⇤ R⇤ Qtot QLW QH QHeI QHeII Ntot NLW NH NHeI NHeII Nb Nb
LW Nb

H Nb
HeI Nb

HeII

[Z�] [vmax] [M�] [yr] [K] [L�] [R�] [s�1] [s�1] [s�1] [s�1] [s�1] – – – – – – – – – –

0.0 0.0 1.7 9.06 4.10 1.48 1.16 46.51 43.80 43.13 39.51 29.26 63.07 60.36 59.69 56.07 45.82 5.76 3.06 2.39 0 0

0.0 0.0 2.0 8.84 4.17 1.76 1.18 46.70 44.46 43.95 40.90 32.19 63.04 60.80 60.28 57.24 48.53 5.66 3.42 2.91 0 0

0.0 0.0 2.5 8.54 4.25 2.13 1.20 46.96 45.19 44.86 42.43 35.37 63.00 61.23 60.90 58.47 51.41 5.53 3.76 3.43 1.0 0

0.0 0.0 3.0 8.33 4.32 2.41 1.23 47.17 45.65 45.46 43.40 37.36 62.99 61.48 61.28 59.23 53.19 5.44 3.93 3.73 1.68 0

0.0 0.0 4.0 8.02 4.42 2.84 1.29 47.49 46.24 46.22 44.61 39.78 63.00 61.76 61.73 60.13 55.29 5.33 4.08 4.06 2.45 0

0.0 0.0 5.0 7.80 4.48 3.15 1.34 47.71 46.60 46.69 45.35 41.21 63.01 61.90 61.99 60.65 56.51 5.24 4.13 4.22 2.87 0

0.0 0.0 7.0 7.50 4.58 3.59 1.45 48.04 47.05 47.29 46.25 42.94 63.04 62.04 62.29 61.25 57.94 5.12 4.12 4.37 3.33 0.02

0.0 0.0 9.0 7.30 4.64 3.90 1.58 48.29 47.33 47.67 46.80 43.98 63.09 62.13 62.47 61.60 58.78 5.06 4.10 4.44 3.57 0.75

0.0 0.0 12.0 7.29 4.69 4.24 1.84 48.53 47.58 48.01 47.27 44.83 63.31 62.37 62.80 62.06 59.62 5.16 4.21 4.65 3.90 1.46

0.0 0.0 15.0 7.15 4.73 4.48 2.03 48.79 47.84 48.34 47.68 45.49 63.43 62.49 62.98 62.32 60.14 5.18 4.23 4.73 4.07 1.89

0.0 0.0 20.0 7.01 4.77 4.81 2.43 49.08 48.12 48.68 48.10 46.18 63.59 62.63 63.19 62.61 60.69 5.21 4.26 4.82 4.24 2.32

0.0 0.0 30.0 6.82 4.82 5.23 3.22 49.46 48.49 49.12 48.61 46.95 63.78 62.81 63.44 62.93 61.27 5.23 4.26 4.88 4.38 2.72

0.0 0.0 40.0 6.72 4.84 5.50 3.96 49.71 48.73 49.39 48.92 47.39 63.92 62.94 63.60 63.14 61.60 5.25 4.26 4.93 4.46 2.93

0.0 0.0 60.0 6.61 4.86 5.85 5.26 50.03 49.03 49.72 49.29 47.90 64.13 63.13 63.82 63.40 62.01 5.28 4.28 4.97 4.54 3.15

0.0 0.0 85.0 6.53 4.87 6.10 6.77 50.29 49.26 49.97 49.56 48.26 64.32 63.29 64.00 63.59 62.30 5.31 4.28 4.99 4.59 3.29

0.0 0.0 120.0 6.48 4.88 6.34 8.55 50.51 49.47 50.19 49.80 48.57 64.50 63.45 64.17 63.79 62.55 5.34 4.29 5.02 4.63 3.40

0.0 0.0 180.0 6.49 4.92 6.57 9.44 50.66 49.62 50.41 50.06 48.91 64.65 63.61 64.40 64.05 62.90 5.32 4.28 5.07 4.72 3.57

0.0 0.0 250.0 6.54 4.92 6.76 11.37 50.83 49.76 50.56 50.23 49.13 64.87 63.81 64.60 64.27 63.17 5.40 4.33 5.13 4.80 3.70

0.0 0.0 300.0 6.53 4.92 6.86 13.06 50.95 49.86 50.66 50.33 49.24 64.98 63.89 64.69 64.36 63.28 5.43 4.34 5.14 4.81 3.72

0.0 0.0 500.0 6.38 4.90 7.14 19.61 51.29 50.17 50.95 50.62 49.54 65.17 64.04 64.82 64.49 63.42 5.39 4.27 5.05 4.72 3.64

General comment: Note that the part of the table depicted here only covers models of non-rotating zero-metallicity Pop III stars. The complete table is available

electronically in space-separated ASCII format from ARAA or from the authors at heibox.uni-heidelberg.de/f/6b5b3fcbd3974fb98d50/. It can be easily read, for

example, using the astropy.io.ascii.read command.

Column description: Z = metallicity in solar units (here only Pop III stars) ⌅ rot = rotational velocity in units of the break-up velocity vmax (here only

non-rotating stellar models) ⌅ M = stellar mass in solar units ⌅ age = stellar lifetime in years ⌅ T⇤ = decadic logarithm of the lifetime averaged e↵ective

temperature in Kelvin ⌅ L⇤ = decadic logarithm of the lifetime averaged bolometric luminosity in solar units ⌅ R⇤ = lifetime averaged stellar radius in solar

units ⌅ Qtot = decadic logarithm of the lifetime averaged total photon flux per second ⌅ QLW = decadic logarithm of the lifetime averaged flux of photons in

the Lyman-Werner band (with energies in the range 11.2eV  h⌫ < 13.6 eV) per second ⌅ QH = decadic logarithm of the lifetime averaged flux of hydrogen

ionizing photons (with energies h⌫ � 13.6 eV) per second ⌅ QHeI = decadic logarithm of the lifetime averaged flux of helium ionizing photons (with energies

h⌫ � 24.6 eV) per second ⌅ QHeII = decadic logarithm of the lifetime averaged flux of He
+

ionizing photons (with energies h⌫ � 54.4 eV) per second ⌅ Ntot

= decadic logarithm of the total number of photons emitted during the lifetime of the star ⌅ NLW = decadic logarithm of the total number of LW photons

emitted during the lifetime of the star ⌅ NH = decadic logarithm of the total number of H ionizing photons emitted during the lifetime of the star ⌅ NHeI

= decadic logarithm of the total number of He ionizing photons emitted during the lifetime of the star ⌅ NHeII = decadic logarithm of the total number of

He
+

ionizing photons emitted during the lifetime of the star ⌅ Nb
= decadic logarithm of the total number of photons emitted during the stellar lifetime

per baryon ⌅ Nb
LW

= decadic logarithm of the total number of LW photons emitted during the stellar lifetime per baryon ⌅ Nb
H

= decadic logarithm of the

total number of H ionizing photons emitted during the stellar lifetime per baryon ⌅ Nb
HeI

= decadic logarithm of the total number of He ionizing photons

emitted during the stellar lifetime per baryon ⌅ Nb
HeII

= decadic logarithm of the total number of He
+

ionizing photons emitted during the stellar lifetime per baryon
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Table A1: Key stellar properties and production rates of ionizing and non-ionizing 
photons as function of stellar mass and metallicity 
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Klessen, & Glover (2023, ARAA, 61, 65 -- 
arXiv.2303.12500)

The total number of photons per stellar baryon (bottom row of Figure 14) is a highly

useful quantity when estimating the impact of star formation on the galactic and inter-

galactic environment in numerical simulations and theoretical models. Combined with

information about the stellar initial mass function (IMF) and linked to the cosmic star-

formation rate density (see Figure 2) it gives an indication of the volume-averaged photon

flux as function of redshift, which in turn is a prerequisite for estimating the evolution of

the cosmic radiation background in di↵erent frequency bins. We compute the numbers for

a representative population of zero-metallicy stars and compare to solar-metallicity stars

in the Milky Way today. For Pop III we assume a logarithmically flat mass spectrum in

the range 0.08  M/M�  500 (see Section 3.2.3), whereas we adopt a (Kroupa 2002)

multi-component power-law IMF with 0.08  M/M�  120 for the solar neighborhood (see

Section 4.4). The resulting population averaged photon numbers per baryon are listed in

Table A2: in log units. We find that the more top-heavy IMF of Pop III stars and their

larger mass range makes the di↵erence in number of ionizing photons emitted per baryon

for the population average even larger than was already noticeable when comparing indi-

vidual stars. Altogether, we expect over 52000 hydrogen ionizing photons per baryon for

the typical stellar population in the early Universe, and the numbers are about 19000 and

1100 for the ionization of He and He+. In contrast, at the present day we have on average

fewer than 500 photons per stellar baryon that can ionize H, 30 for He, and none for He+.

This enormous discrepancy explains why primordial stars are so e�cient in ionizing their

environment and why they are key drivers of early cosmic reionization.

Table A2: Population averaged number of photons per baryon (in log units)

population IMF hNbi hNb
LWi hNb

Hi hNb
HeIi hNb

HeIIi

Pop III log-flat 5.31 4.11 4.72 4.29 3.05

Pop I Kroupa 6.11 2.67 2.69 1.50 0

Column description: population = metal-free Pop III or solar-metallicity Pop I stars ⌅ IMF = stellar

initial mass function, either logarithmically flat or (Kroupa 2002) multi-component power-law model ⌅
hNbi = decadic logarithm of the population averaged total number of photons emitted per stellar baryon

⌅ hNb
LW

i = decadic logarithm of the population averaged number of LW photons emitted per stellar

baryon ⌅ hNb
H
i = decadic logarithm of the population averaged number of H ionizing photons emitted

per stellar baryon ⌅ hNb
HeI

i = decadic logarithm of the population averaged number of He ionizing

photons emitted per stellar baryon ⌅ hNb
HeII

i = decadic logarithm of the population averaged number of

He
+

ionizing photons emitted per stellar baryon
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Table A2: Population averaged number of photons per baryon (in log units) 
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Gessey-Jones et al. (2022, MNRAS, 516, 841)

BUT:	note	that	the	spectra	are	more	
complex	that	simply	blackbodies,	and	so	
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Figure 1. Evolution of temperatures in prestellar cloud cores with metallicities
Z/Z⊙ = 0, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, and 1, as functions of the
number density, which is calculated by one-zone models. The dashed lines
indicate the constant Jeans masses. For those above 102 M⊙ (below 1 M⊙), the
gas is assumed to be fully atomic (molecular) in drawing those lines.
(A color version of this figure is available in the online journal.)

3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its
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Figure 1. Evolution of temperatures in prestellar cloud cores with metallicities
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number density, which is calculated by one-zone models. The dashed lines
indicate the constant Jeans masses. For those above 102 M⊙ (below 1 M⊙), the
gas is assumed to be fully atomic (molecular) in drawing those lines.
(A color version of this figure is available in the online journal.)

3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its
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at	low	metallicity,	line	cooling	
and	dust	coupling	separate,	
and	there	is	the	question	of	
what	triggers	transition	from	
Pop	III	to	Pop	II	star	formation	
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Fig. 1.—: Dependence of gas and dust temperatures on gas
density for metallicities 10−4, 10−5, and 10−6 and zero times
the solar value, calculated just before the first sink particle was
formed (see Table1). In red, we show the gas temperature,
and in blue the dust temperature. The dashed lines are lines
of constant Jeans mass.

3. ANALYSIS

3.1. Thermodynamical evolution of gas and dust
We have performed a set of four simulations for different

metallicities in order to test if dust can efficiently cool the gas
and change the fragmentation behavior. Since dust cooling is
consequence of inelastic gas-grain collisions, and these colli-
sions are more frequent for higher densities, we expect that its

cooling is more efficient at higher densities. The energy trans-
fer from gas to dust vanishes when they couple in temperature,
hence we also expect the cooling to cease when dust reaches
the gas temperature. In order to guide on the evaluation of the
effect of dust on the thermodynamic evolution of the gas and
verify these assumptions, we plot temperature and density for
the various metallicities tested in Figure 1. We compare the
evolution of the dust and gas temperatures in the simulations,
at the point of time just before the formation of the first sink
particle (see Table 1). The dust temperature (shown in blue)
varies from the CMB temperature in the low density region to
the gas temperature (shown in red) at much higher densities.

Changes in metallicity influence the the point in density
where dust cooling becomes efficient. For the Z = 10−4 Z⊙
case, dust cooling begins to be efficient at n ≈ 1011cm−3.
While for Z = 10−5 Z⊙, the density where dust cooling be-
comes efficient is delayed until n ≈ 1013cm−3. For the Z
= 10−6 Z⊙ case, dust cooling becomes important for n !
1014cm−3, preventing the gas temperature from getting higher
than 1500 K. For instance, the metal-free case reaches tem-
peratures of approximately 2000 K.

The efficiency of the cooling expressed in the temperature
drop also varies with metallicity. The gas temperature de-
creases to roughly 400 K in the 10−5 Z⊙ simulation, and 200 K
in the Z = 10−4 Z⊙ case. This temperature drop significantly
increases the number of Jeans masses present in the collaps-
ing region, making the gas unstable to fragmentation. The
dust and the gas temperatures couple for high densities, when
the compressional heating starts to dominate again over the
dust cooling. The subsequent evolution of the gas is close to
adiabatic.

When we compare our results to the calculations of Omukai
et al. (2010), we find good agreement with their 1D hydrody-
namical models, although we expected some small difference
due to effects of the turbulence and rotation (see Dopcke et al.,
2011) and also due to the use of different dust opacity models.

3.2. Heating and cooling rates.
The gas thermal evolution during the collapse takes differ-

ent paths depending on the metallicity, as expressed in the
density-temperature diagram (Figure 1). In order to explain
them, we take a closer look at the cooling and heating pro-
cesses involved.

In Figure 2 we show the main cooling and heating rates
divided into four panels for the different metallicities.

There are parts of the evolution where metallicity has no
important effect, such as for for n < 108cm−3, where PdV
heating dominates. For n > 108cm−3, H2 line cooling starts
to become important. And for densities as high as 1010cm−3,
heating and cooling processes are balanced for all cases.

The effect of the metallicity, and so the dust cooling, starts
to be seen for n ! 108cm−3. At n ≈ 8×109cm−3, for instance,
the two main coolants (dust and H2 line cooling) are compara-
ble to the two main heaters (H2 formation and PdV heating).
For all cases where dust was present, its cooling became the
most important thermal process at some point in the collapse.

These thermal processes affect the density-temperature di-
agram (Figure 1) in all cases, such as for n " 108cm−3, when
PdV heating dominates, the evolution is close to adiabatic.
When cooling and heating balance, for 108 " n/cm−3 " 1011,
the evolution is close to isothermal.

The other thermal processes play a minor role during the
collapse. For example, H2 dissociation cooling only becomes

[M/H] = -4

[M/H] = -6

[M/H] = -ininity

8 Dopcke et al.

Fig. 6.—: Sink particle mass function at the point when 4.7
M⊙ of gas had been accreted by the sink particles in each sim-
ulation. To resolve the fragmentation, the mass resolution is
smaller than the Jeans mass at the point in the temperature-
density diagram where dust and gas couple and the compres-
sional heating starts to dominate over the dust cooling.

creating more sparse over-densities.

3.7. Mass accretion
The mass accreted by the sink particles varied within the

different metallicities, and changed the final IMF. This dif-
ferent accretion can also influence the expected accretion lu-
minosity. We did not take this thermal process into account
during the calculations, but it is relevant to speculate if it is
comparable to the other thermal processes, and necessary to
include in future simulations.

In Figure 10 we present accretion properties for the new-
born stellar systems. The top panel shows how the total mass
in sinks evolve with time, and the comparison for different Z.
The accretion rate varies from 0.02 to 0.17 M⊙ yr−1, and it is
on average lower for the Z = 10−4 Z⊙ case. The Z = 10−4 Z⊙
case accreted mass slower than the others, taking the longest
time to accrete 4.7M⊙.

In the bottom panel of Figure 10, we show the accretion
luminosity calculated by considering that all gas was accreted

Fig. 7.—: Timescales for fragmentation (bottom panel) and
accretion (middle panel), and also their fraction (top panel)
versus enclosed gas mass (Menc) for the metallicities tested.
The values were calculated just before the first sink particle
was formed.

Fig. 8.—: Timescales for fragmentation and accretion for dif-
ferent metallicities. t f rag(⟨N/(dN/dt)⟩) indicates the aver-
age for the number of sink particles (N) divided by the time
variation of that number, or the sink particle formation rate.
tacc(⟨M/(dM/dt)⟩) is the average accretion time, which is cal-
culated by dividing the total mass in sink particles dived by
the mass accretion rate.

Dopcke et al., 2013, ApJ, 776, 103)
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different metallicities, and changed the final IMF. This dif-
ferent accretion can also influence the expected accretion lu-
minosity. We did not take this thermal process into account
during the calculations, but it is relevant to speculate if it is
comparable to the other thermal processes, and necessary to
include in future simulations.

In Figure 10 we present accretion properties for the new-
born stellar systems. The top panel shows how the total mass
in sinks evolve with time, and the comparison for different Z.
The accretion rate varies from 0.02 to 0.17 M⊙ yr−1, and it is
on average lower for the Z = 10−4 Z⊙ case. The Z = 10−4 Z⊙
case accreted mass slower than the others, taking the longest
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disk fragmentation mode

gravoturbulent fragmentation mode

hints for differences 
in mass spectrum

Dopcke et al., 2013, ApJ, 776, 103)

Dopcke et al. (2013, ApJ, 776, 103)

hints for changes in the mass spectrum in  
the metallicity range 10-4 — 10-5 Zsun 

driven by dust coupling

Caffau et al. (2011, Nature 477, 67), Schneider et al. (2006, MNRAS 
369, 825), Schneider et al. (2012, MNRAS, 423, L60), Chiaki et al (2013, 
ApJ, 762, 50), Chiaki et al (2016, MNRAS, 463, 2781), Chon et al. 
(2021, MNRAS, 508, 4175)
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also stellar dynamical aspects  
and run-away collisions are  
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Caffau et al. (2011, Nature 477, 67), Schneider et al. (2006, MNRAS 
369, 825), Schneider et al. (2012, MNRAS, 423, L60), Chiaki et al (2013, 
ApJ, 762, 50), Dopcke et al., 2013, ApJ, 776, 103), Chiaki et al (2016, 
MNRAS, 463, 2781)

4184 S. Chon, K. Omukai and R. Schneider

Figure 10. The mass distribution when the total stellar mass reaches 150 M⊙ for the different metallicity models. The vertical axis represents the number of
stars in each mass bin. The black dashed lines show dN/d log M∗ ∝ −1, where N is the number density in each mass bin, which has an equal width in logarithm.

time at the density, where the sink particle is introduced. When
Z/Z⊙ = 10−6 (grey), the number of stars is at the lower edge of
the shaded region. When Z/Z⊙ = 10−4 (green) and 10−5 (blue),
the number roughly follows equation (5). In those cases, the stellar
number sometimes decreases due to stellar mergers while it increases
by disc fragmentation afterward. Although this causes fluctuations
in the number of stars, its time average roughly obeys the relation
of equation (5). Note that the decrease due to the mergers in this
metallicity range is also reported by Shima & Hosokawa (2021),
whose study follows the evolution in a few thousand years. Our
result suggests that the number of stars increases in a later stage than
calculated in their study and behaves similarly to the primordial
case. Above Z/Z⊙ = 10−3, the number of stars increases more
steeply than in the lower metallicity cases and no longer obeys
equation (5). In those cases, the circumstellar disc is highly unstable
due to the dust cooling and a number of stars are ejected by the
close stellar encounters (see Fig. 5). In addition, fragmentation of
the filament at larger scales (104–105 au) further boosts the number
of stars in the case of Z/Z⊙ ! 10−2. Such effects as the stellar
ejection and the fragmentation of the filament at the larger scale
cause the deviation of the number of stars from equation (5) at
Z/Z⊙ ! 10−3.

Note that the thermal evolution in our study is different from that in
Susa (2019), even for the case with Z/Z⊙ = 10−6. In our simulation,
HD cooling becomes important and the temperature becomes smaller
than 100 K at low-density regions with n ! 108 cm−3 (see Fig. 3).
This causes smaller gas infall rate towards the cloud centre (e.g.
Hirano et al. 2015) compared to the case where the HD cooling does
not effective. As a result, the circumstellar disc becomes smaller in
mass and more stable against gravitational instability, leading to a
smaller number of stars. In fact, the number evolution in Z/Z⊙ =
10−6 (grey line) lies slightly outside the shaded region.

3.3 Mass function of the protostars

Fig. 10 shows the mass distribution of the protostars for the different
metallicities when the total stellar mass reaches 150 M⊙. We can see
that the distribution gradually shifts from top-heavy to Salpeter-like
with increasing metallicity. For example, when Z/Z⊙ = 10−6, all
the protostars have masses larger than 1 M⊙ and the typical mass is
several tens of solar mass. When Z/Z⊙ = 10−5, the mass distribution
becomes log-flat with the minimum stellar mass of 0.01 M⊙. When
Z/Z⊙ ! 10−4, a larger number of low-mass stars are formed due to
dust-induced fragmentation. This trend is consistent with the results
of simulations by Dopcke et al. (2011, 2013), where the number
of low-mass stars increases with increasing metallicity. The mass
distribution for such low-mass stars is universal across a wide range
of metallicity values: the number peaks at 0.01–0.1 M⊙ and declines
in proportion to M−1

∗ at the massive end. This universal distribution
is consistent with those found in previous studies (Bate 2009, 2019;
Safranek-Shrader et al. 2014, 2016). In addition to this universal
profile, we can find a massive stellar component in the mass range of
1–50 M⊙ when Z/Z⊙ ! 10−2. The number of stars associated with
this component exceeds that expected from a simple extrapolation
from the lower mass end with the scaling M−1

∗ .
To quantitatively compare the mass function for the different

metallicities, we plot in Fig. 11 the cumulative number (panel a) and
mass distribution (panel b) normalized by the total stellar number and
mass, respectively. The dashed line shows the cumulative fraction
assuming the Chabrier IMF with the maximum mass of 100 M⊙
(Chabrier 2003). The cumulative number fraction for Z/Z⊙ ! 10−4

indicates that the number of stars is dominated by low-mass stars
with M∗ ! 1 M⊙. This is consistent with the results obtained by
previous studies, where the dust cooling induces the formation of
a number of small stars (Clark et al. 2008; Dopcke et al. 2011,
2013; Safranek-Shrader et al. 2016). In terms of number fraction, the
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Clark et al. (2008, ApJ 672, 757)

also stellar dynamical aspects  
and run-away collisions are  
important

hints for changes in the mass spectrum in  
the metallicity range 10-4 — 10-5 Zsun 

driven by dust coupling

- mass spectrum  
  peaks below 1 Msun 
- cluster VERY dense 
  nstars = 2.5 x 109 pc-3 
- fragmentation  
  at density  
  ngas = 1012 - 1013 cm-3
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critical halo mass 
for star formation

criteria	for	collapse	and	star	formation	
• look	at	competition	between	gravity	(density	 )	and	gas	pressure		
(sound	speed	 	or	temperature	 ):	Jeans	mass	

• critical	mass:		

	

• MJ	goes	up	if	T	➚	or	ϱ	➘	
				—>	larger	mass	reservoir	available	in	atomic	cooling	halos	(as	needed	for	SMS)	

• note:	can	be	extended	by	considering	effective	sound	speed	
			with	 			or			 	

—>	higher	masses	favored	in	magnetized	halos	and	in	presence	of	high	streaming	velocity	

ρ
cs T

MJ = π5/2

6 ( 1
G )

3/2
ρ−1/2c3

s = π5/2

6 ( k
G )

3/2

( 1
μmH )

2
n−1/2T3/2

c2
s,eff = c2

s + σ2 σ = σturb σ = vAlfven

Jeans (1902, PTRS A, 199,1), Barkana & Loeb (2001, Phys. Rep. 349, 125), Glover (2013, ASSL, 396, 
103), Klessen & Glover (2023, ARAA, 61, 65)
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atomic cooling halos

Agarwal et al. (2016, MNRAS 470, 4034)

Analytic resolution to LW versus metals 4035

Figure 1. This is the model we investigate. Two synchronized proto galaxies
sit in a clustered region exposed to a background LW radiation field. The
DCBH halo is centred within the small solid circle. The neighbouring halo is
denoted by the large ‘star’ immediately to the right-hand side of the DCBH
halo. We investigate the impact of metal pollution from the galaxies (marked
as red stars) on both of the (synchronized) haloes growing at the centre. The
background galaxies must provide a sufficient LW background to delay the
collapse of the central haloes but crucially not pollute the two synchronized
galaxies with metals.

of these haloes is the DCBH candidate, termed the target halo. The
background LW intensity required to delay the collapse of the two
haloes is Jbg ∼ 1001 in units of J21, i.e. 10−21 erg cm−2 s−1 Hz−1 sr−1.
R17 find that this Jbg is not sufficient to prevent H2 formation in
the core of the central haloes. For the complete destruction of H2

throughout the target halo, one of haloes, the neighbour, must form
stars (see Fig. 1 for an illustration) shortly before the target halo
undergoes runaway collapse – this window is the synchronization
time. The rapid star formation (SF) in the neighbour produces an
intense burst of radiation, which completely prevents H2 formation
in the core of the target halo pushing it on to the isothermal cooling
track and towards DCBH formation.

R17 show that in this scenario the deleterious effects of photo-
evaporation from the neighbour are avoided. However, the treat-
ment of R17 neglected the impact of metal pollution from both
the background galaxies and the neighbour. Here, using the semi-
analytic model developed by Agarwal et al. (2017) (hereafter A17),
we investigate the impact of metal pollution from both the back-
ground galaxies and the neighbour. For the purposes of gaining
the most insight into metal pollution, we assume a reductio ad ab-
surdum approach, where the parameters chosen in this study are
most unfavourable for DCBH formation. In particular, we assume
instantaneous metal mixing and that the metals are ejected from the
background galaxies as soon as they become star forming.

1 Previous studies have reported that a 100–1000 times smaller value of
Jbg is sufficient to suppress PopIII SF in similar mass haloes (Machacek
et al. 2001; Yoshida et al. 2003; O’Shea & Norman 2008). We attribute
the difference to the fact that simulations of R17 extract haloes from rare-
peaks, which was not the case in the aforementioned studies and that the
delay required for synchronization is longer.

In Section 2, we outline the DC formation model that we explore
and discuss both the radiation field and metal field expected in such
a model. In Section 3, we outline our results and finally, in Section 5,
we present our conclusions.

2 WO R K I N G M O D E L

The model described below builds on the existing framework of
R17 for initial inputs for the synchronous halo pairs from their
simulation(s), and on A17 for computing the metallicity of the
target halo.

2.1 Background radiation field

The required background LW radiation field, as found in R17, to
allow both the target halo and the neighbour halo to grow suffi-
ciently is JLW ! 100 J21. In order to calculate the stellar mass
required to create the necessary LW intensity, we use spectral en-
ergy distributions (SEDs) derived from Raiter, Schaerer & Fosbury
(2010) rescaled to a Kroupa (Kroupa 2001) initial mass function
(IMF). We assume that the stellar populations have a metallicity of
Z ∼ 5 × 10−6 Z⊙, as they are expected to form in very low metal-
licity gas and therefore produce copious amounts of LW radiation.
We turn the background galaxies on at a redshift z = 35 as was
done in R17. We assume a constant star formation rate (SFR) over
a 60 Myr period (from z ∼ 35 up until z ∼ 25). In order to pro-
duce a constant LW intensity of JLW ! 100 J21 a final stellar mass
of Mtot

⋆,bg = 5 × 106 M⊙ is required, within the sphere of radius
∼2.5 kpc around the target halo. The background galaxies are as-
sumed to be made up of a total of ns sub-systems, which together
provide the cumulative intensity required. The model is outlined for
illustrative purposes in Fig. 1. The value of ns has no impact on our
calculations, which depend only on the SED assumed for the stellar
population we now describe. The value of the LW intensity can be
computed for each sub-system as (Agarwal et al. 2012)

Jbg,sub(ti) = ĖLW(ti)
4π2D2

M⋆,6(ti)
"νJ21

, (1)

where ĖLW(ti) is the LW emission (erg s−1) for a given age of
a 106 M⊙ stellar population at a given time-step ti, "ν is the
difference between the highest and the lowest frequency in the LW
band, D is the distance of each sub-system from the DCBH halo,
M∗,6 is the mass of each sub-system normalized to 106 M⊙ and
J21 is the normalization factor for the specific intensity. The extra
factor of π in the denominator accounts for the solid angle. We then
simply compute the total background at each redshift as nsJbg,sub.
The average distance between the sub-systems and the target galaxy
is set at 2.25 kpc.

Fig. 2 shows the Jbg used here as a function of redshift, z (thick
solid line). The LW intensity increases as the stellar mass increases
reaching a value of Jbg ∼ 100 J21 at z ∼ 31 – this is the minimum
background intensity required in the models of R17, and we take this
as our fiducial case.2 We assume that the 10 background galaxies
all become active at approximately z = 35 with an initial mass of
M∗ ∼ 8 × 104 M⊙. Over the redshift range z = 35 to 25.4, the
mass of each background galaxy grows with a constant SFR of
0.01 M⊙ yr−1. This results in the total stellar mass over all sub-
systems to grow from M∗ ∼ 8 × 104 to 5 × 106 M⊙. It is this total

2 Throughout, we take z2540_100_250 in R17 as the fiducial case.

MNRAS 470, 4034–4038 (2017)Downloaded from https://academic.oup.com/mnras/article-abstract/470/4/4034/3871370
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● halos come in groups 
● some form Pop III stars earlier 
● their LW/UV radiation prevents 

keeps neighboring halos in 
atomic phase —> not, no SF 

● need well tunes conditions:    
“goldilock” scenario 

● these sit there and accumulate 
mass until they collapse in 
atomic phase —> SF 

● talks by John Regan, John 
Wise, Lewis Prole
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impact of streaming velocity 
and LW background

● streaming velocity and LW background can be included  
in early galaxy formation  simulationsLWBG and streaming velocities: first stars 1779

Figure 1. Gas number density slices of the four simulations without LW background at redshift z = 15: v0 lw0 (first column), v1 lw0 (second column), v2 lw0
(third column), v3 lw0 (fourth column). We show the whole box in the top row and a 20 ckpc h−1 excerpt in the middle row. In the bottom row, we show a
2 ckpc h−1 close-up, centred around the highest density gas from the middle row.

In the rightmost panel, which shows our highest streaming velocity
value of 3σ rms the gas distribution is quite fuzzy and washed out.
The effect is especially strong in the x-direction, which corresponds
to the direction of the streaming velocity in the initial conditions On
these large scales, one can directly observe the effect of streaming
velocities: they smooth out the gas distribution.

The middle row of Fig. 1 shows a close-up with a side length
of 20 ckpc h−1, centred around a minihalo (the size of the region is
indicated in the top row). For this zoom-in view, we chose exactly
the same x, y, and z coordinates in all simulations to be able to
better compare the effects of the different streaming velocities. As
the streaming velocity increases, the highest density region shifts to
the right, in the direction of the streaming velocity.

As seen on the large scales, streaming velocities lead to the
washing out of the gas structures, whereas the dark matter structure
remains largely unchanged. All structure in the Universe forms in a
hierarchical manner: first, sheets and filaments emerge, before they
collapse into haloes, with smaller haloes forming first. For a large
time interval in the early Universe, these relative velocities between
gas and dark matter were larger than the escape velocities of the dark
matter potentials of the filaments and haloes that began emerging
through gravitational interactions. As a result, the gas follows the
dark matter structure later when the streaming velocity is higher, and
we can see a lower density contrast in the slice plots [e.g. compare
to Naoz & Narayan (2014), who find a phase shift between the linear
collapse modes of gas and dark matter].

As a consequence of this behaviour, the gas fraction in the haloes
is reduced (Tseliakhovich & Hirata ; Popa et al. 2016; Schauer et al.

2019a), as is the mean gas density within the virial radius. Even the
dark matter power spectrum is slightly reduced (O’Leary & McQuinn
2012; Ahn & Smith 2018).

This directly impacts the ability of the gas in the haloes to cool
and form stars. Haloes formed in regions of the Universe with high
streaming velocities have less gas than those formed in regions with
lower streaming velocities, and the gas that they do retain is less
dense overall, and hence less able to form H2 and cool. This can be
seen clearly in the bottom row of Fig. 1, where we show a 2 ckpc h−1

close-up on the minihalo, centred around the highest density region
(indicated by the white lines in the middle row). One immediately
sees that the maximum density decreases with increasing streaming
velocity. As star formation requires gas to reach high densities, it
is not surprising that high streaming velocities hinder and delay the
process. As we will show in the next subsection, only more massive
haloes are able to retain enough high-density gas for Pop III star
formation to proceed when the streaming velocity is large.

3.2 The effects of a LW background

LW radiation is another way to suppress star formation. By photodis-
sociating molecular hydrogen, the main coolant at high redshifts
is destroyed. We therefore investigate the abundance of molecular
hydrogen in Fig. 2. Similar to Fig. 1, the top row shows a slice of
the entire simulation box, progressively zoomed into one halo in the
middle and bottom rows. As it is the most common of the streaming
velocity values investigated here (see Section 4.3), we restrict our
discussion to the 1 σ rms case, and show simulations with no LW

MNRAS 507, 1775–1787 (2021)
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LWBG and streaming velocities: first stars 1781

Figure 3. Slice plots of the gas number density (top row), dark matter density (second row), gas temperature (third row), and H2 abundance (bottom row) of
the 20 ckpc h−1 cut-out region shown in the middle rows of Figs 1 and 2 at redshift z = 15. From left to right, we show the simulations v0 lw0, v1 lw0, v2 lw0,
v3 lw0, v1 lw-2, and v1 lw-1. While the number density and gas structure in general changes to lower maximum values for increasing streaming velocity
values, it is only decreased a little bit for an increasing LW background. This is reflected in the temperature slices where the increased temperatures that indicate
shock heating from the formation of the halo and filaments, largely follow the density structure. The dark matter density structure remains largely unchanged.
For the two simulations with a non-zero LW background, the molecular hydrogen abundance drops to below 10−7, with only the centres of the haloes retaining
a higher fraction. This is reflected in a slightly lower maximum gas number density, as seen in the top row.

Figure 4. Number of star-forming minihaloes at each redshift for all twelve
simulations. We use colours to distinguish the streaming velocity values:
black for 0 σ rms, green for 1 σ rms, blue for 2 σ rms, and pink for 3 σ rms. The
LW background values are indicated by the saturation of the colour: light
is used for no LW background, middle for the weak background (J21 =
0.01) and dark for the stronger background (J21 = 0.1). For example,
light blue is simulation v2 lw0, medium blue simulation v2 lw-2, and dark
blue simulation v2 lw-1. The number of haloes increases with decreasing
redshift.

Compared to this, the presence or absence of streaming velocities
has a much larger impact on the number of star-forming haloes.
Keeping the LW background constant, this number decreases on
average by a factor of 5 for 1 σ rms compared to the zero velocity
case. This reduction reaches factors of 30–40 when going from zero
to a streaming velocity of 2 σ rms, and can exceed values of 100 when
increasing the streaming velocity to 3 σ rms.

To put these numbers into context, note that the most representative
value for vbc that we examine is vbc ≈ 1 σrms, as the volume fraction
of streaming velocities peaks at 0.8 σ rms (compare Fig. 12), while a
typical value for the LW background at the redshifts studied here is
J21 ≈ 0.01 (Wise et al. 2012). Neglecting the effects of streaming
velocities therefore has a stronger influence on the number of star-
forming haloes than neglecting the presence of an LW background
when considering a typical region of the Universe.

4.2 Halo masses of star-forming minihaloes

We investigate the halo masses of star-forming minihaloes, and by
how much these masses are shifted to larger values for increasing
streaming velocities and a LW background. This is a more robust
measurement than the number of haloes that are forming stars per
redshift bin, as that number depends on the box size and on the details
of setting up the initial conditions.

MNRAS 507, 1775–1787 (2021)
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● streaming velocity and LW background change critical mass for collapse

Schauer et  al. (2021, MNRAS,  507, 1775)

1782 A. T. P. Schauer et al.

Figure 5. The minimum halo mass of star-forming haloes at the given
redshift. Halos are only accounted for when they first fulfil our star formation
criterion. Both streaming velocities and a LWBG lead to haloes of higher
masses forming stars.

We further consider all haloes only at the first snapshot (taken at
equidistant redshift intervals with !z = 1) in which they are forming
stars. Pop III stars are massive and short-lived (Schaerer 2002), and
one or two supernova explosions are enough to enrich the halo gas
to metallicities of Z ∼ 10−3.5 (Rossi, Salvadori & Skúladóttir 2021),
high enough for Pop III star formation to transition into Pop II star
formation (Bromm et al. 2001). By only counting haloes once, we
hence avoid biasing against higher mass haloes that grew through
accretion and mergers, and that might take Pop II instead of Pop III
star formation into account.

In Fig. 5, we show the mass of the least massive halo that fulfils
the SF criterion as a function of redshift for all 12 simulations. In this
plot and those that follow, we exclude data at redshift z ≥ 24, as we
initialize the LW background at that redshift. If no new halo is found
to be star forming at a given snapshot, we don’t show a data point at
this redshift. After the onset of star formation, this only happens in
the simulations with the highest streaming velocity, 3 σ rms.

In the simulation with no LW background and no streaming
velocity, we find the lowest mass threshold: Mmin ≃ 3 × 105 M⊙.
Increasing the strength of the LW background increases Mmin, as
does increasing the streaming velocity. However, once again we see
that changes in the streaming velocity have a much bigger impact
than changes in the strength of the LW background, at least for the
range of LW background strengths considered here.

In all of the simulations, typically only a few minihaloes with
masses M ∼ Mmin actually form stars, while most remain starless.
Star formation only becomes common in minihaloes with masses
that are a factor of a few greater than Mmin (see e.g. Schauer et al.
2019a for a more detailed discussion of this point). Therefore, as
well as looking at Mmin, it is also useful to look at the impact of
streaming and LW radiation on the average mass that a minihalo has
at the point at which it first forms stars, Mave. This is plotted in Fig. 6
as a function of redshift for all twelve simulations.

Here again, we see that streaming velocities play a stronger role
in increasing Mave than the LW background. To better understand
this behaviour, we show in Fig. 7 the full distribution of the masses
of star-forming haloes in each simulation, selected at the point at
which they first start forming stars. Note that this is not the same as
selecting the haloes at a fixed point in time. In particular, the fact that
many of these distributions include few or no haloes with M > 107

M⊙ does not imply that haloes of this mass are unable to form stars.

Figure 6. Same as Fig. 5, but for the average halo mass of star-forming
minihaloes at that redshift. As in Fig. 5, haloes are only accounted for when
they first fulfil the star formation criteria. Again, both streaming velocities and
a LWBG increase the average halo mass for star formation. The behaviour is
very stochastic and no clear trend with redshift can be observed.

Rather, it implies that all haloes of this mass have at least one lower
mass progenitor that was already able to form stars.

We see from the Figure that in most cases, the halo mass
distributions are well fit by Gaussians. The exceptions are the runs
with 3 σrms streaming, and the run with 2 σrms and J21 = 0.1, all of
which produce too few star-forming haloes (typically 1–4) to let us
draw any conclusions about the shape of the halo mass distribution.
In each panel in the figure, we indicate the average halo mass, Mave =
µ, the standard deviation of the Gaussian fit to the mass distribution,
σ , the standard error in the mean, E = σ/

√
N , and the number of

star-forming haloes selected from the simulation, N. One can see
again that the average halo mass shifts to higher values for larger
streaming velocities and a stronger LW background. We also note
that standard deviation of the distribution is roughly 1/4 dex for the
0 and 1 σ rms-streaming velocity simulations, but slightly smaller for
higher values. This decline is unexpected and could be a result of
our small sample size for large streaming velocities. A more detailed
analysis requires significantly larger numerical simulations which
are beyond the scope of our current investigation.

The number of haloes in our simulation is limited due to our box
size of 1cMpc h−1. In previous work (Schauer et al. 2019a), we have
seen that there is about a one order of magnitude spread between
the lest massive halo forming stars and the most massive halo that
does not form stars. Especially in simulations with high streaming
velocity values or a LWBG of 0.1, the upper end of the halo mass
function is influenced by our box size.

4.3 The average mass at which minihaloes first form stars

As we have already seen, neither Fig. 5 nor Fig. 6 display a strong
redshift dependence. Similar to our previous work (Schauer et al.
2019a), we conclude that the mass thresholds for star formation are
largely independent of redshift. Therefore, we can stack the data for
each simulation from all redshifts in order to obtain better statistics.
Our goal is to identify a general formula that links the mass of the
typical star-forming halo to its environmental parameters, here the
size of the streaming velocity and the strength of the LW background
it is exposed to.

The resulting two parameter metric is illustrated in Fig. 8, where
we present the average mass at which a minihalo first forms stars as
a function of the streaming velocity, and in Fig. 9, where we show
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● analytic fit formula for Mcrit as function of sigma and J21

Schauer et  al. (2021, MNRAS,  507, 1775)

fit formula:

1784 A. T. P. Schauer et al.

Figure 10. Average halo mass as a function of streaming velocity for our
three values of the LW background. We show the data points (symbols, dashed
lines) and the corresponding fit (solid lines). In the lower three panels, we
show the residuals for the three values individually: no radiation (2nd panel),
a LW background with J21 = 0.01 (third panel), and a LW background with
J21 = 0.1 (fourth panel).

the average halo mass as a function of the LW background.
The average mass rises linearly with the streaming velocity, and

the intercept scales as the square root of the strength of the LW
background. We find that most of the data can be well fit by a
relation

log10 Mave = log10 M0 + 0.4159 × vbc

σrms
, (9)

where the intercept log10M0 is described by

log10 M0 = 6.0174 ×
(

1 + 0.166 ×
√

J21

)
, (10)

and all masses are given in solar masses. This relation is valid for the
range of values explored in our simulations, i.e. 0 σbc ≤ vbc ≤ 3 σbc

and 0 ≤ J21 ≤ 0.1.
The minimum halo mass can be fitted with a function of the same

shape. This time, however, the slope s varies significantly with the
LW background value, and we apply a fit to the slope as well.

log10 Mmin = log10 M0 + s × vbc

σrms
, (11)

with

log10 M0 = 5.562 ×
(

1 + 0.279 ×
√

J21

)
, (12)

and

s = 0.614 ×
(

1 − 0.560 ×
√

J21

)
. (13)

Again, this relation is valid for the streaming velocity values and LW
background values explored by these simulations, especially for J21

≤ 0.1.
We evaluate the fit to the data in Figs 10 and 11, where we display

the average (minimum) halo mass as a function of streaming velocity
in the top panel and the residual in the bottom panel. We find that
the fit (solid lines) matches the data (dashed lines) very well (within
4 per cent) for zero and 1 σ rms streaming velocities, and moderately
well for 2 σ rms streaming. It does not fit well for the 3 σ rms streaming
runs, but as we have already seen, these runs are strongly affected
by small number statistics. With our fit function, the minimum halo
mass exceeds the average halo mass for vbc ≈ 2.5σ rms, a result of the
poor number statistics for 3σ rms. An additional comparison of our fit
functions to the data is given in the appendix, in Figs A1.

Figure 11. Same as Fig. 10, but for the minimum halo mass as a function of
streaming velocity for our three values of the LW background.

Figure 12. Differential (blue line) and cumulative (orange line) volume
filling fractions of the Universe, as a function of streaming velocity. The right
axis shows the accuracy – the deviation of the fit from a perfect fit – by solid
lines, for no LW background (light grey), a weak LW background with J21 =
0.01 (middle grey), and a strong LW background with J21 = 0.1 (black).

It is also important to note that the zero and 1 σ rms cases are by far
the most representative of the Universe. This is quantified in Fig. 12,
where we show differential (cumulative) volume filling fractions of
the Universe as a function of streaming velocity, illustrated by the
blue (orange) line. One can see that there is a relatively sharp peak at
0.8 σ rms. We also include the accuracy (the deviation of the residual
fraction from the perfect one-to-one fit) in this figure as described by
the light grey (a LW background with J21 = 0.1), the medium grey (a
LW background with J21 = 0.01), and the black (no LW background)
lines. In the low streaming velocity regions, the fit is very accurate,
and overall, the fit represents the data very well (at least 96 per cent).

5 D ISCUSSION

5.1 Comparison with previous results

There have been a number of previous studies of the impact of
a LW background on H2 cooling in minihaloes (see e.g. Haiman
et al. 2000; Machacek et al. 2001; Yoshida et al. 2003; Wise &
Abel 2007; O’Shea & Norman 2008). The majority of these studies
found substantial suppression of H2 cooling for LW background
field strength J21 = 0.1, in some tension with our findings that a

MNRAS 507, 1775–1787 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1775/6325552 by guest on 20 M
arch 2022

1784 A. T. P. Schauer et al.

Figure 10. Average halo mass as a function of streaming velocity for our
three values of the LW background. We show the data points (symbols, dashed
lines) and the corresponding fit (solid lines). In the lower three panels, we
show the residuals for the three values individually: no radiation (2nd panel),
a LW background with J21 = 0.01 (third panel), and a LW background with
J21 = 0.1 (fourth panel).
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background. We find that most of the data can be well fit by a
relation

log10 Mave = log10 M0 + 0.4159 × vbc

σrms
, (9)

where the intercept log10M0 is described by

log10 M0 = 6.0174 ×
(

1 + 0.166 ×
√

J21

)
, (10)

and all masses are given in solar masses. This relation is valid for the
range of values explored in our simulations, i.e. 0 σbc ≤ vbc ≤ 3 σbc

and 0 ≤ J21 ≤ 0.1.
The minimum halo mass can be fitted with a function of the same

shape. This time, however, the slope s varies significantly with the
LW background value, and we apply a fit to the slope as well.

log10 Mmin = log10 M0 + s × vbc

σrms
, (11)

with

log10 M0 = 5.562 ×
(

1 + 0.279 ×
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)
, (12)

and

s = 0.614 ×
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)
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Again, this relation is valid for the streaming velocity values and LW
background values explored by these simulations, especially for J21

≤ 0.1.
We evaluate the fit to the data in Figs 10 and 11, where we display

the average (minimum) halo mass as a function of streaming velocity
in the top panel and the residual in the bottom panel. We find that
the fit (solid lines) matches the data (dashed lines) very well (within
4 per cent) for zero and 1 σ rms streaming velocities, and moderately
well for 2 σ rms streaming. It does not fit well for the 3 σ rms streaming
runs, but as we have already seen, these runs are strongly affected
by small number statistics. With our fit function, the minimum halo
mass exceeds the average halo mass for vbc ≈ 2.5σ rms, a result of the
poor number statistics for 3σ rms. An additional comparison of our fit
functions to the data is given in the appendix, in Figs A1.

Figure 11. Same as Fig. 10, but for the minimum halo mass as a function of
streaming velocity for our three values of the LW background.

Figure 12. Differential (blue line) and cumulative (orange line) volume
filling fractions of the Universe, as a function of streaming velocity. The right
axis shows the accuracy – the deviation of the fit from a perfect fit – by solid
lines, for no LW background (light grey), a weak LW background with J21 =
0.01 (middle grey), and a strong LW background with J21 = 0.1 (black).

It is also important to note that the zero and 1 σ rms cases are by far
the most representative of the Universe. This is quantified in Fig. 12,
where we show differential (cumulative) volume filling fractions of
the Universe as a function of streaming velocity, illustrated by the
blue (orange) line. One can see that there is a relatively sharp peak at
0.8 σ rms. We also include the accuracy (the deviation of the residual
fraction from the perfect one-to-one fit) in this figure as described by
the light grey (a LW background with J21 = 0.1), the medium grey (a
LW background with J21 = 0.01), and the black (no LW background)
lines. In the low streaming velocity regions, the fit is very accurate,
and overall, the fit represents the data very well (at least 96 per cent).

5 D ISCUSSION

5.1 Comparison with previous results

There have been a number of previous studies of the impact of
a LW background on H2 cooling in minihaloes (see e.g. Haiman
et al. 2000; Machacek et al. 2001; Yoshida et al. 2003; Wise &
Abel 2007; O’Shea & Norman 2008). The majority of these studies
found substantial suppression of H2 cooling for LW background
field strength J21 = 0.1, in some tension with our findings that a

MNRAS 507, 1775–1787 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1775/6325552 by guest on 20 M
arch 2022

with

and

this can be included as sub-grid estimate in 
numerical simulations or semi-analytic models



ga
la

ct
ic 

ce
nt

er
cr

itic
al

 m
as

s 
fo

r S
F

what is most likely 
streaming velocity?

● distribution of streaming velocities

Schauer et  al. (2021, MNRAS,  507, 1775)

most likely streaming 
velocity is 0.8 σrms

1784 A. T. P. Schauer et al.

Figure 10. Average halo mass as a function of streaming velocity for our
three values of the LW background. We show the data points (symbols, dashed
lines) and the corresponding fit (solid lines). In the lower three panels, we
show the residuals for the three values individually: no radiation (2nd panel),
a LW background with J21 = 0.01 (third panel), and a LW background with
J21 = 0.1 (fourth panel).

the average halo mass as a function of the LW background.
The average mass rises linearly with the streaming velocity, and

the intercept scales as the square root of the strength of the LW
background. We find that most of the data can be well fit by a
relation

log10 Mave = log10 M0 + 0.4159 × vbc

σrms
, (9)

where the intercept log10M0 is described by

log10 M0 = 6.0174 ×
(

1 + 0.166 ×
√

J21

)
, (10)

and all masses are given in solar masses. This relation is valid for the
range of values explored in our simulations, i.e. 0 σbc ≤ vbc ≤ 3 σbc

and 0 ≤ J21 ≤ 0.1.
The minimum halo mass can be fitted with a function of the same

shape. This time, however, the slope s varies significantly with the
LW background value, and we apply a fit to the slope as well.

log10 Mmin = log10 M0 + s × vbc

σrms
, (11)

with

log10 M0 = 5.562 ×
(

1 + 0.279 ×
√

J21

)
, (12)

and

s = 0.614 ×
(

1 − 0.560 ×
√

J21

)
. (13)

Again, this relation is valid for the streaming velocity values and LW
background values explored by these simulations, especially for J21

≤ 0.1.
We evaluate the fit to the data in Figs 10 and 11, where we display

the average (minimum) halo mass as a function of streaming velocity
in the top panel and the residual in the bottom panel. We find that
the fit (solid lines) matches the data (dashed lines) very well (within
4 per cent) for zero and 1 σ rms streaming velocities, and moderately
well for 2 σ rms streaming. It does not fit well for the 3 σ rms streaming
runs, but as we have already seen, these runs are strongly affected
by small number statistics. With our fit function, the minimum halo
mass exceeds the average halo mass for vbc ≈ 2.5σ rms, a result of the
poor number statistics for 3σ rms. An additional comparison of our fit
functions to the data is given in the appendix, in Figs A1.

Figure 11. Same as Fig. 10, but for the minimum halo mass as a function of
streaming velocity for our three values of the LW background.

Figure 12. Differential (blue line) and cumulative (orange line) volume
filling fractions of the Universe, as a function of streaming velocity. The right
axis shows the accuracy – the deviation of the fit from a perfect fit – by solid
lines, for no LW background (light grey), a weak LW background with J21 =
0.01 (middle grey), and a strong LW background with J21 = 0.1 (black).

It is also important to note that the zero and 1 σ rms cases are by far
the most representative of the Universe. This is quantified in Fig. 12,
where we show differential (cumulative) volume filling fractions of
the Universe as a function of streaming velocity, illustrated by the
blue (orange) line. One can see that there is a relatively sharp peak at
0.8 σ rms. We also include the accuracy (the deviation of the residual
fraction from the perfect one-to-one fit) in this figure as described by
the light grey (a LW background with J21 = 0.1), the medium grey (a
LW background with J21 = 0.01), and the black (no LW background)
lines. In the low streaming velocity regions, the fit is very accurate,
and overall, the fit represents the data very well (at least 96 per cent).
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There have been a number of previous studies of the impact of
a LW background on H2 cooling in minihaloes (see e.g. Haiman
et al. 2000; Machacek et al. 2001; Yoshida et al. 2003; Wise &
Abel 2007; O’Shea & Norman 2008). The majority of these studies
found substantial suppression of H2 cooling for LW background
field strength J21 = 0.1, in some tension with our findings that a
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● halos come in groups 
● some form Pop III stars earlier 
● their LW/UV radiation prevents 

keeps neighboring halos in 
atomic phase —> not, no SF 

● these sit there and accumulate 
mass until they collapse in 
atomic phase —> SF 

● BUT: now rapid H2 formation, 
and lots of fragmentation         
—> cluster of stars 

● again not good environment for 
direct collapse BH

Lewis R. Prole: Atomically cooled halos: massive black hole seeds

Fig. 7: Time evolution of the ratio of mass of the largest sink
to total mass accreted accross all sinks, mass of the largest sink
particle, total mass accreted onto sink particles and total number
of sink particles. For comparison, results from the 15 Pop III star
forming minihalos from LP23 are shown in green.

age main sequence (ZAMS) masses of these stars are unknown
(see §5), we have confirmed that atomically cooled halos do pro-
duce a population of higher mass protostars when compared to
regular Pop III star forming minihalos, at least after the first 100
yr after the formation of the first protostar. These protostars can
then accrete the available gas in competition with further star
formation.

5. Final stellar and black hole masses

In order to estimate the ZAMS masses of the sinks we run lower
resolution simulations of Halo 3 which allows us to evolve the
system over longer timescales. The top panel of Figure 10 shows
how the total mass of the system of sink particles grows as a
function of time across the di↵erent resolutions tested. We show
the formation of new sink particles in the 10�13 and 10�10 g cm�3

simulations as star shaped markers. We do not show the forma-

Fig. 8: Number of enclosed Jeans masses as a function of density,
shown at a time 100 yr after the formation of the first sink par-
ticle. The Jeans mass at each density bin is calculated using the
mass weighted average temperature and density within the bin.
The calculated Jeans mass is then compared to the total mass of
gas at or above the density of the bin.

Fig. 9: Comparison of the sink particle mass function from the 3
atomic cooling halos at ⇠100 yr versus the 15 H2 cooling mini-
halos from LP23 at ⇠300 yr. Power laws of M0.85 and M�2 are
superimposed to give the reader an idea of the slopes involved.

tion of sinks for the 10�6 g cm�3 cases as fragmentation occurs
almost immediately. Clearly the higher the resolution used, the
earlier fragmentation occurs. If we take t = 0 to be the time
at which the first sink forms in each case then the second sink
forms almost immediately in the highest resolution case, after
⇠ 10 yr in the 10�10 g cm�3 case and only after ⇠ 1000 yr in
the 10�13 g cm�3 case. As the resolution used does not signifi-
cantly a↵ect the growth of the total system, the lowest resolu-
tion run shows that the system will continue to grow linearly
through the pre-main sequence phase to reach a mass of ⇠ 104

M� by 104 yr i.e. there will be ⇠ 104 M� available for star for-
mation within the central 264 au. The increased fragmentation
in the higher resolution simulations complicates how this mass
will be distributed amongst the protostars. The bottom panel of
Figure 10 shows the accretion rate onto the most massive surviv-
ing sink particle i.e. the most massive non-ejected protostar. At
the end of the high resolution simulations, the largest survivors

Article number, page 9 of 14
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with A > 2. This equation can be rewritten for the PL20 density
setup as

ρ(r, t = 0) = qr−2 with q = 5.30 × 1016 g cm−1 (17)

for a total enclosed mass of 100 M⊙. The constant A in this setup
has the value

A = 4πGq

c2
s

≈ 61.9. (18)

Comparing the factor A to the number of Jeans masses in the cloud

MJ = π5/2

6
c3

s

G3/2ρ1/2
, (19)

NJ = Mtot

MJ
(20)

it can be rewritten as follows:

A = 4π8/3q

62/3

N
2/3
J

ρ1/3M
2/3
tot

∝ N
2/3
J . (21)

In order to find the theoretical value for the accretion factor m0 =
m(r = 0, t = 0), equations (15) have to be integrated from a large
x to a value close to zero. For a critical sphere with A = 2 this
factor is m0 = 0.95, for A = 61.9 it reaches a very high value of
m0 ≈ 421 (see Fig. 2). This finally gives a theoretical accretion
rate of

ṀSIS = m0
c3

s

G
≈ 1.89 × 10−3 M⊙ yr−1. (22)

The accretion factor m0 can be fitted with a power-law dependence

m0 ∝ A1.52 (23)

(see right-hand plot in Fig. 2) which in turn gives a theoretical
accretion rate close to a linear dependence on the number of Jeans

masses

m0 ∝ N 1.01
J . (24)

2.5 Initial turbulence

2.5.1 Power spectrum of the turbulence

The turbulence is modelled with an initial random velocity field,
originally created in Fourier space, and transformed back into real
space. The power spectrum of the modes is given by a power-
law function in wavenumber space (k space) with Ek ∝ k−2, cor-
responding to Burgers turbulence (the value for incompressible,
Kolmogorov turbulence would be Ek ∝ k−5/3 in this notation), which
is consistent with the observed spectrum of interstellar turbulence
(e.g. Larson 1981; Heyer & Brunt 2004). The velocity field is dom-
inated by large-scale modes due to the steep power-law exponent,
−2, with the largest mode having the size of the simulation box.
Thus, changing the slope of the power spectrum is not expected
to affect the results significantly (see Bate 2009b). However, the
random seed and the mixture of modes of the initial turbulence can
potentially change the results more strongly, which we investigate
in this study. Concerning the nature of the k modes, compressive
(curl-free) are distinguished from solenoidal (divergence-free) ones.
The simulation uses three types of initial fields: pure compressive
fields (c), pure solenoidal (s) and a natural (random) mixture (m) of
both. These choices were motivated by the strong differences found
in driven turbulence simulations using purely solenoidal and purely
compressive driving of the turbulence (Federrath et al. 2008, 2009,
2010b). Note however that only decaying turbulence with compres-
sive, mixed and solenoidal modes are considered here. For each
of these three types, two different random velocity seeds are cre-
ated, leading to six different initial velocity fields in total (c-1, c-2,
m-1, m-2, s-1, s-2), which are combined with the different density
profiles.

No overall global rotation is imposed on the cloud. Due to
the random nature of the turbulence, the net rotation and the net

Figure 2. Accretion rates as a function of A from equations (15) and (16). In the left-hand plot, the values for small A are compared with the Shu values. The
right-hand plot shows the high-A regime relevant for the simulation with the PL20 density profile.

C⃝ 2011 The Authors, MNRAS 413, 2741–2759
Monthly Notices of the Royal Astronomical Society C⃝ 2011 RAS
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while increasing it improves physical consistency. In all the models
described in the present work, we fix a value of fitM that is constant
during the evolution. Depending on the models, we consider either
fitM = 0.999 or fitM = 0.99. The consequences of this assumption
are discussed in Section 4.1.

Convective zones are determined according to the Schwarzschild
criterion. For numerical stability, we do not include any overshoot-
ing. The consequences of these choices are discussed in Section 4.3.

3 MO D E L S

3.1 Initial setups

Accretion at high rates on to low-mass hydrostatic cores makes
numerical convergence difficult. Thus, for 0.1, 1 and 10 M⊙ yr−1,
we initialize our models with a mass of Mini = 10 M⊙, while for
0.01 and 0.001 M⊙ yr−1 we take Mini = 2 M⊙. The chemical
composition of the initial models is homogeneous, with a hydrogen
mass fraction of X = 0.7516, a helium mass fraction of Y = 0.2484
and a metallicity Z = 1 − X − Y = 0. We include deuterium with
a mass fraction of X2 = 5 × 10−5 (Bernasconi & Maeder 1996;
Behrend & Maeder 2001; Haemmerlé et al. 2016). The chemical
composition of the accreted material is identical to that of the initial
protostellar seeds. The initial structures correspond to polytropes
with n ≃ 3/2, with flat entropy profiles, so that the stars start their
evolution as fully convective objects. The central temperatures are
4.1 × 105 and 6.6 × 105 K for the 10 and 2 M⊙ initial models,
respectively, which is below the temperature required for D-burning
(TD ≃ 1–2 × 106 K). We choose the initial time-step in order to
ensure that the mass accreted in the first time-step does not exceed
0.1 M⊙. As a consequence, the initial time-step depends on the
accretion rate, and is given by dt = 0.1 M⊙/Ṁ . We take fitM = 0.999
as a fiducial value, except for 0.001 M⊙ yr−1. The motivations and
consequences of this choice are discussed in Section 4.1. For reasons
of numerical stability, we do not include the GR correction in the
model at Ṁ = 0.001 M⊙ yr−1. This model never exceeds 104 M⊙
significantly, so that we expect GR effects to be negligible in this
case.

3.2 Evolutionary tracks and internal structures

The evolutionary tracks on the Hertzsprung–Russell (HR) diagram
are shown in Fig. 1 for the five accretion rates. For all the models,
the luminosity increases monotonically as the stellar mass grows by
accretion, except in the very early evolution. The mass–luminosity
relation is nearly independent of the accretion history (Fig. 3, lower
panel). But the evolution of the effective temperature differs sig-
nificantly between models at various rates. After an adjustment
phase, the tracks converge towards two distinct asymptotic regimes
in the HR diagram: the high-Ṁ regime (Ṁ ! 0.01 M⊙ yr−1) gives
a nearly vertical track in the red, along the Hayashi limit, while the
low-Ṁ regime (Ṁ < 0.01 M⊙ yr−1) leads to the blue, along the
zero-age main sequence (ZAMS). In the high-Ṁ regime, the ef-
fective temperature is locked around 5000–6000 K, and thus never
exceeds 104 K before the luminosity reaches 1010 L⊙. The star is
bloated up, with a radius larger than 1000 R⊙, as a ‘red super-
giant protostar’ (Hosokawa, Omukai & Yorke 2012). In the low-Ṁ
regime, the track evolves immediately towards the blue, approach-
ing Teff ≃ 105 K before the luminosity exceeds 106 L⊙. The increase
in effective temperature is only stopped when the star reaches the
ZAMS and stops contracting. Thus, the location of the star on the
HR diagram is confined between two limits: the Hayashi limit in
the red and the ZAMS in the blue. Each of these limits corresponds

Figure 1. Evolutionary tracks on the HR diagram for the models at the
indicated accretion rates. The grey straight lines indicate the stellar radius,
and the black dotted curve is the ZAMS of Schaerer (2002).

to the asymptotic track of our models according to their accretion
regime, low- or high-Ṁ , i.e. depending on if the rate is above or be-
low a critical value Ṁcrit ∼ 0.005 M⊙ yr−1. Notice that the Hayashi
limit reflects the physics at the stellar surface, while the ZAMS limit
reflects the physics at the centre. Models at Ṁ = 0.001 M⊙ yr−1

or with Ṁ ≥ 0.1 M⊙ yr−1 converge to their asymptotic track rela-
tively early, before the luminosity exceeds significantly 106 L⊙. For
the intermediate case Ṁ = 0.01 M⊙ yr−1, the track remains longer
between the two asymptotic limits, showing oscillations in Teff in
the range 10 000–30 000 K. Convergence towards the Hayashi limit
occurs eventually when the luminosity has grown to 2 × 107 L⊙.

The internal structure of these models is illustrated in Fig. 2. In
addition, Fig. 3 shows the evolution of their central temperatures
and surface luminosities. All five models start with a fully convec-
tive structure and a central temperature Tc < TD. The star takes its
energy from Kelvin–Helmholtz (KH) contraction, losing entropy
(dLr/dMr = −Tds/dt > 0) and increasing Tc. As Tc increases, the
opacity in the centre becomes low enough for a radiative core to
form and grow in mass. The growth of the radiative core follows the
isotherms, which reflects the fact that the transition from convec-
tion to radiation is an effect of the temperature increase, through the
opacity. Only for Ṁ = 10 M⊙ yr−1, intermediate convective zones
survive in between the radiative regions. Since these zones corre-
spond to the Lagrangian layers of the initial seed, we expect their
properties to reflect the choice of the initial structure. The reduction
of opacity in the central regions produces an increase in the internal
luminosity in radiative regions (dLr/dMr > 0). The entropy pro-
duced in these regions is absorbed by the cold external convective
layers with high opacity (dLr/dMr < 0). As the internal temperature
increases, the boundary between these two regions moves outwards
in mass. When this ‘luminosity wave’ (Larson 1972; Hosokawa
et al. 2010) reaches the stellar surface, the radius increases abruptly,
by more than one order of magnitude for Ṁ ≥ 1 M⊙ yr−1, by a
factor of a few for Ṁ ≤ 0.01 M⊙ yr−1. Fig. 4 shows the evolution
of the luminosity wave for the model at 0.1 M⊙ yr−1.

In the while, Tc > TD ≃ 1–2 × 106 K (Fig. 3, upper panel; see
also the isotherm of 106 K in Fig. 2), and deuterium starts burning:
in the radiative core for Ṁ ≤ 0.1 M⊙ yr−1, in the central convective

MNRAS 474, 2757–2773 (2018)
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tKH = GM2/RL for M = 500 M⊙, with R and L from the ZAMS of
Schaerer (2002). The accretion time is simply M/Ṁ for the same
value of the mass and gives the time-scale of the evolution in the
accretion phase. The time-scale balance changes according to the
accretion rate. For Ṁ = 0.001 M⊙ yr−1, the KH time is shorter by
one order of magnitude than the accretion time, while for Ṁ ≥ 0.1
M⊙ yr−1 it is longer by one order of magnitude or more (three orders
of magnitude for 10 M⊙ yr−1). For the intermediate case Ṁ = 0.01
M⊙ yr−1, both time-scales are similar. As a consequence, in the
low-Ṁ regime, the star has the time to contract towards the ZAMS
before its mass increases significantly, while in the high-Ṁ regime
the mass increases too fast, and the stellar radius grows.

After this point, the behaviour of the various models remains
qualitatively different depending on the regime, low- or high-Ṁ .
In the low-Ṁ regime, the internal structure is qualitatively similar
to that of stars at present days (see e.g. Haemmerlé et al. 2016).
However, due to the lower opacity, the star remains more com-
pact and convective zones are thinner. As a consequence, shell
D-burning occurs in the radiative core instead of the convective
envelope. In the model at 0.001 M⊙ yr−1, the swelling leads to a
maximum radius of 32 R⊙ (instead of 48.6 R⊙ in the present-
day case, see model CV2 in Haemmerlé et al. 2016). Then, at
M = 8.5 M⊙, the star becomes fully radiative and contracts. The
central temperature increases (Fig. 3, upper panel), triggering the 3α

reaction. The energy produced by the 3α reaction remains negligi-
ble. The total luminosity is dominated by the gravitational contribu-
tion at this stage (KH contraction, dLr/dMr ≃ −Tds/dt). However,
the reaction produces enough 12C in the centre in order to trig-
ger the CNO cycle, which becomes the dominant energy source
for the rest of the evolution (Fig. 3, lower panel). As a conse-
quence, a convective core forms at M = 40 M⊙ and grows in mass
(Fig. 2, lower panel), while the central temperature is locked at
Tc = 1.26 × 108 K due to the thermostatic effect of H-burning
(Fig. 3, upper panel). The radius reaches a minimum of 3.3 R⊙
at M = 50 M⊙, and then grows continuously until the end of the
computation, according to the homologous relation Tc ∝ M/R and
the fact that Tc ≃ const. At M = 11 650 M⊙, numerical conver-
gence becomes too difficult and we stop the computations, while
H-burning is still proceeding.

In the high-Ṁ regime, the structure evolves in a qualitatively
different way. Due to the fast mass load at the surface, the radius
cannot contract and the star remains large. This leads to low temper-
atures in the outer regions, which keep thus a high opacity and stay
convective. Below this convective envelope, intermediate convec-
tive zones appear. A high accretion rate favours the formation and
the development of these convective regions, because of the time-
scale balance: the higher the rate, the shorter the time for the star to
radiate the entropy contained in the deepest regions before reaching
a given mass. For Ṁ = 10 M⊙ yr−1, in addition to the convective
core described above, an intermediate convective region forms in
the Lagrangian layers that were accreted during the swelling (see
the isomass of 100 M⊙ in the upper panel of Fig. 2). This convec-
tive zone results from the accretion of entropy when the luminosity
wave crosses the surface. When the peak of the wave approaches the
surface (dLr/dMr = −Tds/dt < 0), the surface entropy increases
suddenly. Through the assumption of cold disc accretion, the spe-
cific entropy sac of the material that is accreted increases then. After
the passage of the peak, the surface can radiate its entropy effi-
ciently (dLr/dMr = −Tds/dt > 0), and sac decreases suddenly. For
the layers that are accreted at this stage, the decrease in the accreted
entropy results in a negative entropy gradient (ds/dMr < 0), which
drives convection. Then, entropy is redistributed on a thermal time-

Figure 6. Comparison of the mass–radius relation between our models at in-
dicated accretion rates and the analytic fit R ∝ M1/2 (Hosokawa et al. 2012).

scale in the interior, but this mechanism remains inefficient at high
Ṁ because of the time-scale balance between the KH and accretion
times. This is why this intermediate convective zone appears only
in the model at Ṁ > 1 M⊙ yr−1. Despite the growth of the stellar
radius, each Lagrangian layer contracts at this stage. As a con-
sequence, the central temperature increases until H-burning starts
(Fig. 3). The physics of H-burning is the same as in the low-Ṁ
regime: the 3α reaction is triggered first, and produces the 12C that
allows the CNO cycle to operate as the dominant energy source
for the rest of the evolution (Fig. 3, lower panel). A convective
core forms (Fig. 2), and the central temperature is locked at Tc ≃
1.25–2 × 108 K by the thermostatic effect of H-burning (Fig. 3,
upper panel). Notice that the higher the accretion rate, the higher
the mass at which H-burning starts. This is due to the time-scale
balance: the higher the rate, the shorter is the accretion time com-
pared to the KH time and thus the higher the mass accreted during
the KH contraction towards the ZAMS. Once the convective core
has formed, the evolution proceeds in a regular way. The stellar
structure is made of three zones: the convective core, which grows
in mass and radius along the isotherms (T ≃ 108 K), the convective
envelope, which covers less than 10 per cent of the stellar mass (less
than 2 per cent during most of the evolution), and an intermediate
radiative region in between. While H burns in the convective core,
D burns in a thin shell of the intermediate radiative zone, following
the isotherms T ≃ TD. As the stellar mass grows by accretion, the
stellar radius continues to increase monotonically. Notice that in the
mass range 200 M⊙ < M < 5 × 104 M⊙, the mass–radius relation
follows the power law R ∝ M1/2 of Hosokawa et al. (2012, Fig. 6).
This relation comes from the facts that the luminosity is close to the
Eddington luminosity LEdd ∝ M (Figs 3 and 7) and that the effective
temperature is nearly constant along the Hayashi line, so that L ∝
R2Teff

4 gives R ∝ M1/2.
During this phase, the luminosity is so high that the KH time

becomes shorter than the accretion time, despite the growth of the
KH time with mass (tKH = GM2/RL ∝ M1/2, for R ∝ M1/2 and
L ∝ M; see Schleicher et al. 2013). However, the structure of mas-
sive fast accreting stars is highly non-homologous, so that the argu-
ment of the time-scales, computed from global quantities with the
assumption of homology, is not relevant in this mass range. While
most of the layers contract efficiently, a thin surface layer absorbs
the entropy radiated by the deep regions and thus cannot contract,
despite the short global KH time-scale.
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while increasing it improves physical consistency. In all the models
described in the present work, we fix a value of fitM that is constant
during the evolution. Depending on the models, we consider either
fitM = 0.999 or fitM = 0.99. The consequences of this assumption
are discussed in Section 4.1.

Convective zones are determined according to the Schwarzschild
criterion. For numerical stability, we do not include any overshoot-
ing. The consequences of these choices are discussed in Section 4.3.

3 MO D E L S

3.1 Initial setups

Accretion at high rates on to low-mass hydrostatic cores makes
numerical convergence difficult. Thus, for 0.1, 1 and 10 M⊙ yr−1,
we initialize our models with a mass of Mini = 10 M⊙, while for
0.01 and 0.001 M⊙ yr−1 we take Mini = 2 M⊙. The chemical
composition of the initial models is homogeneous, with a hydrogen
mass fraction of X = 0.7516, a helium mass fraction of Y = 0.2484
and a metallicity Z = 1 − X − Y = 0. We include deuterium with
a mass fraction of X2 = 5 × 10−5 (Bernasconi & Maeder 1996;
Behrend & Maeder 2001; Haemmerlé et al. 2016). The chemical
composition of the accreted material is identical to that of the initial
protostellar seeds. The initial structures correspond to polytropes
with n ≃ 3/2, with flat entropy profiles, so that the stars start their
evolution as fully convective objects. The central temperatures are
4.1 × 105 and 6.6 × 105 K for the 10 and 2 M⊙ initial models,
respectively, which is below the temperature required for D-burning
(TD ≃ 1–2 × 106 K). We choose the initial time-step in order to
ensure that the mass accreted in the first time-step does not exceed
0.1 M⊙. As a consequence, the initial time-step depends on the
accretion rate, and is given by dt = 0.1 M⊙/Ṁ . We take fitM = 0.999
as a fiducial value, except for 0.001 M⊙ yr−1. The motivations and
consequences of this choice are discussed in Section 4.1. For reasons
of numerical stability, we do not include the GR correction in the
model at Ṁ = 0.001 M⊙ yr−1. This model never exceeds 104 M⊙
significantly, so that we expect GR effects to be negligible in this
case.

3.2 Evolutionary tracks and internal structures

The evolutionary tracks on the Hertzsprung–Russell (HR) diagram
are shown in Fig. 1 for the five accretion rates. For all the models,
the luminosity increases monotonically as the stellar mass grows by
accretion, except in the very early evolution. The mass–luminosity
relation is nearly independent of the accretion history (Fig. 3, lower
panel). But the evolution of the effective temperature differs sig-
nificantly between models at various rates. After an adjustment
phase, the tracks converge towards two distinct asymptotic regimes
in the HR diagram: the high-Ṁ regime (Ṁ ! 0.01 M⊙ yr−1) gives
a nearly vertical track in the red, along the Hayashi limit, while the
low-Ṁ regime (Ṁ < 0.01 M⊙ yr−1) leads to the blue, along the
zero-age main sequence (ZAMS). In the high-Ṁ regime, the ef-
fective temperature is locked around 5000–6000 K, and thus never
exceeds 104 K before the luminosity reaches 1010 L⊙. The star is
bloated up, with a radius larger than 1000 R⊙, as a ‘red super-
giant protostar’ (Hosokawa, Omukai & Yorke 2012). In the low-Ṁ
regime, the track evolves immediately towards the blue, approach-
ing Teff ≃ 105 K before the luminosity exceeds 106 L⊙. The increase
in effective temperature is only stopped when the star reaches the
ZAMS and stops contracting. Thus, the location of the star on the
HR diagram is confined between two limits: the Hayashi limit in
the red and the ZAMS in the blue. Each of these limits corresponds

Figure 1. Evolutionary tracks on the HR diagram for the models at the
indicated accretion rates. The grey straight lines indicate the stellar radius,
and the black dotted curve is the ZAMS of Schaerer (2002).

to the asymptotic track of our models according to their accretion
regime, low- or high-Ṁ , i.e. depending on if the rate is above or be-
low a critical value Ṁcrit ∼ 0.005 M⊙ yr−1. Notice that the Hayashi
limit reflects the physics at the stellar surface, while the ZAMS limit
reflects the physics at the centre. Models at Ṁ = 0.001 M⊙ yr−1

or with Ṁ ≥ 0.1 M⊙ yr−1 converge to their asymptotic track rela-
tively early, before the luminosity exceeds significantly 106 L⊙. For
the intermediate case Ṁ = 0.01 M⊙ yr−1, the track remains longer
between the two asymptotic limits, showing oscillations in Teff in
the range 10 000–30 000 K. Convergence towards the Hayashi limit
occurs eventually when the luminosity has grown to 2 × 107 L⊙.

The internal structure of these models is illustrated in Fig. 2. In
addition, Fig. 3 shows the evolution of their central temperatures
and surface luminosities. All five models start with a fully convec-
tive structure and a central temperature Tc < TD. The star takes its
energy from Kelvin–Helmholtz (KH) contraction, losing entropy
(dLr/dMr = −Tds/dt > 0) and increasing Tc. As Tc increases, the
opacity in the centre becomes low enough for a radiative core to
form and grow in mass. The growth of the radiative core follows the
isotherms, which reflects the fact that the transition from convec-
tion to radiation is an effect of the temperature increase, through the
opacity. Only for Ṁ = 10 M⊙ yr−1, intermediate convective zones
survive in between the radiative regions. Since these zones corre-
spond to the Lagrangian layers of the initial seed, we expect their
properties to reflect the choice of the initial structure. The reduction
of opacity in the central regions produces an increase in the internal
luminosity in radiative regions (dLr/dMr > 0). The entropy pro-
duced in these regions is absorbed by the cold external convective
layers with high opacity (dLr/dMr < 0). As the internal temperature
increases, the boundary between these two regions moves outwards
in mass. When this ‘luminosity wave’ (Larson 1972; Hosokawa
et al. 2010) reaches the stellar surface, the radius increases abruptly,
by more than one order of magnitude for Ṁ ≥ 1 M⊙ yr−1, by a
factor of a few for Ṁ ≤ 0.01 M⊙ yr−1. Fig. 4 shows the evolution
of the luminosity wave for the model at 0.1 M⊙ yr−1.

In the while, Tc > TD ≃ 1–2 × 106 K (Fig. 3, upper panel; see
also the isotherm of 106 K in Fig. 2), and deuterium starts burning:
in the radiative core for Ṁ ≤ 0.1 M⊙ yr−1, in the central convective
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Figure 2. Internal structures of the models for the indicated accretion rates.
In each panel, the upper curve is the stellar radius, the blue and green areas
indicate convective zones, and the grey areas indicate radiative transport. The
yellow hatched areas correspond to D- and H-burning, and the red hatched
areas indicate the GR instability according to the polytropic criterion of
equation (7) with n = 3. The black curves indicate the Lagrangian layers
of log (Mr/M⊙) = 1, 2, 3, 4 and 5, and the white ones are isotherms of
log(T [K]) = 5, 6, 7 and 8.

total luminosity
H-burning

Figure 3. Evolution of the central temperature (upper panel) and of the
luminosity (lower panel) as a function of the stellar mass, for models with
the indicated accretion rates. In the lower panel, the solid lines indicate the
total luminosity, and the dashed lines the contribution from H-burning only.

Figure 4. Luminosity wave at 0.1 M⊙ yr−1. The three curves show the
internal luminosity profiles at M = 10, 20 and 30 M⊙. The first profile
corresponds to the fully convective initial model. At the second one, the
radiative core has grown to 80 per cent of the total stellar mass, but the stellar
radius is still decreasing (R = 118 R⊙). In the last profile, the luminosity
wave has reached the surface, dLr/dMr > 0 everywhere, and the radius has
increased to 821 R⊙.

Figure 5. Time-scale balance: comparison between the time-scales for ac-
cretion and KH contraction at M = 500 M⊙. The KH time is computed
using the ZAMS radius and luminosity (Schaerer 2002).

zones for Ṁ ≥ 1 M⊙ yr−1 (Fig. 2). Once deuterium is exhausted in
the centre, the D-burning region moves outwards in mass (shell D-
burning), following the isotherms (Fig. 2). The convective core that
formed in the high-Ṁ models survives the D exhaustion, but remains
confined in the same Lagrangian layers that correspond to the initial
seed, and thus contracts with it. Notice that neither this convective
zone nor the plateau in central temperature visible in Fig. 3 (at
30 M⊙ < M < 100 M⊙) is due to D-burning, as one could naively
believe. Test computations without deuterium confirmed that this
feature appears in any case. Actually, our computations show that
D-burning has no significant impact on the stellar structure of the
models described here.

After the luminosity wave has reached the surface, all the layers
of the star lose entropy (dLr/dMr = −Tds/dt > 0). For low enough
accretion rates (Ṁ ∼ 0.001 M⊙ yr−1), the stellar radius decreases
as a consequence, despite the new mass that is continuously ac-
creted, and the star can contract towards the ZAMS. For high Ṁ

however, the entropy losses are not efficient enough to make the
stellar radius decrease. Despite the contraction of all the layers, the
new material that lands on the stellar surface makes the stellar radius
increase monotonically for the rest of the evolution.

In order to illustrate the origins of this difference between the low-
and high-Ṁ regime, we plot in Fig. 5 the time-scales for accretion
and KH contraction. The KH time gives the time-scale for thermal
adjustment in the stellar interior and indicates the time it takes for
the star to contract towards the ZAMS if accretion stops. We use
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tKH = GM2/RL for M = 500 M⊙, with R and L from the ZAMS of
Schaerer (2002). The accretion time is simply M/Ṁ for the same
value of the mass and gives the time-scale of the evolution in the
accretion phase. The time-scale balance changes according to the
accretion rate. For Ṁ = 0.001 M⊙ yr−1, the KH time is shorter by
one order of magnitude than the accretion time, while for Ṁ ≥ 0.1
M⊙ yr−1 it is longer by one order of magnitude or more (three orders
of magnitude for 10 M⊙ yr−1). For the intermediate case Ṁ = 0.01
M⊙ yr−1, both time-scales are similar. As a consequence, in the
low-Ṁ regime, the star has the time to contract towards the ZAMS
before its mass increases significantly, while in the high-Ṁ regime
the mass increases too fast, and the stellar radius grows.

After this point, the behaviour of the various models remains
qualitatively different depending on the regime, low- or high-Ṁ .
In the low-Ṁ regime, the internal structure is qualitatively similar
to that of stars at present days (see e.g. Haemmerlé et al. 2016).
However, due to the lower opacity, the star remains more com-
pact and convective zones are thinner. As a consequence, shell
D-burning occurs in the radiative core instead of the convective
envelope. In the model at 0.001 M⊙ yr−1, the swelling leads to a
maximum radius of 32 R⊙ (instead of 48.6 R⊙ in the present-
day case, see model CV2 in Haemmerlé et al. 2016). Then, at
M = 8.5 M⊙, the star becomes fully radiative and contracts. The
central temperature increases (Fig. 3, upper panel), triggering the 3α

reaction. The energy produced by the 3α reaction remains negligi-
ble. The total luminosity is dominated by the gravitational contribu-
tion at this stage (KH contraction, dLr/dMr ≃ −Tds/dt). However,
the reaction produces enough 12C in the centre in order to trig-
ger the CNO cycle, which becomes the dominant energy source
for the rest of the evolution (Fig. 3, lower panel). As a conse-
quence, a convective core forms at M = 40 M⊙ and grows in mass
(Fig. 2, lower panel), while the central temperature is locked at
Tc = 1.26 × 108 K due to the thermostatic effect of H-burning
(Fig. 3, upper panel). The radius reaches a minimum of 3.3 R⊙
at M = 50 M⊙, and then grows continuously until the end of the
computation, according to the homologous relation Tc ∝ M/R and
the fact that Tc ≃ const. At M = 11 650 M⊙, numerical conver-
gence becomes too difficult and we stop the computations, while
H-burning is still proceeding.

In the high-Ṁ regime, the structure evolves in a qualitatively
different way. Due to the fast mass load at the surface, the radius
cannot contract and the star remains large. This leads to low temper-
atures in the outer regions, which keep thus a high opacity and stay
convective. Below this convective envelope, intermediate convec-
tive zones appear. A high accretion rate favours the formation and
the development of these convective regions, because of the time-
scale balance: the higher the rate, the shorter the time for the star to
radiate the entropy contained in the deepest regions before reaching
a given mass. For Ṁ = 10 M⊙ yr−1, in addition to the convective
core described above, an intermediate convective region forms in
the Lagrangian layers that were accreted during the swelling (see
the isomass of 100 M⊙ in the upper panel of Fig. 2). This convec-
tive zone results from the accretion of entropy when the luminosity
wave crosses the surface. When the peak of the wave approaches the
surface (dLr/dMr = −Tds/dt < 0), the surface entropy increases
suddenly. Through the assumption of cold disc accretion, the spe-
cific entropy sac of the material that is accreted increases then. After
the passage of the peak, the surface can radiate its entropy effi-
ciently (dLr/dMr = −Tds/dt > 0), and sac decreases suddenly. For
the layers that are accreted at this stage, the decrease in the accreted
entropy results in a negative entropy gradient (ds/dMr < 0), which
drives convection. Then, entropy is redistributed on a thermal time-

Figure 6. Comparison of the mass–radius relation between our models at in-
dicated accretion rates and the analytic fit R ∝ M1/2 (Hosokawa et al. 2012).

scale in the interior, but this mechanism remains inefficient at high
Ṁ because of the time-scale balance between the KH and accretion
times. This is why this intermediate convective zone appears only
in the model at Ṁ > 1 M⊙ yr−1. Despite the growth of the stellar
radius, each Lagrangian layer contracts at this stage. As a con-
sequence, the central temperature increases until H-burning starts
(Fig. 3). The physics of H-burning is the same as in the low-Ṁ
regime: the 3α reaction is triggered first, and produces the 12C that
allows the CNO cycle to operate as the dominant energy source
for the rest of the evolution (Fig. 3, lower panel). A convective
core forms (Fig. 2), and the central temperature is locked at Tc ≃
1.25–2 × 108 K by the thermostatic effect of H-burning (Fig. 3,
upper panel). Notice that the higher the accretion rate, the higher
the mass at which H-burning starts. This is due to the time-scale
balance: the higher the rate, the shorter is the accretion time com-
pared to the KH time and thus the higher the mass accreted during
the KH contraction towards the ZAMS. Once the convective core
has formed, the evolution proceeds in a regular way. The stellar
structure is made of three zones: the convective core, which grows
in mass and radius along the isotherms (T ≃ 108 K), the convective
envelope, which covers less than 10 per cent of the stellar mass (less
than 2 per cent during most of the evolution), and an intermediate
radiative region in between. While H burns in the convective core,
D burns in a thin shell of the intermediate radiative zone, following
the isotherms T ≃ TD. As the stellar mass grows by accretion, the
stellar radius continues to increase monotonically. Notice that in the
mass range 200 M⊙ < M < 5 × 104 M⊙, the mass–radius relation
follows the power law R ∝ M1/2 of Hosokawa et al. (2012, Fig. 6).
This relation comes from the facts that the luminosity is close to the
Eddington luminosity LEdd ∝ M (Figs 3 and 7) and that the effective
temperature is nearly constant along the Hayashi line, so that L ∝
R2Teff

4 gives R ∝ M1/2.
During this phase, the luminosity is so high that the KH time

becomes shorter than the accretion time, despite the growth of the
KH time with mass (tKH = GM2/RL ∝ M1/2, for R ∝ M1/2 and
L ∝ M; see Schleicher et al. 2013). However, the structure of mas-
sive fast accreting stars is highly non-homologous, so that the argu-
ment of the time-scales, computed from global quantities with the
assumption of homology, is not relevant in this mass range. While
most of the layers contract efficiently, a thin surface layer absorbs
the entropy radiated by the deep regions and thus cannot contract,
despite the short global KH time-scale.
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Figure 2. Internal structures of the models for the indicated accretion rates.
In each panel, the upper curve is the stellar radius, the blue and green areas
indicate convective zones, and the grey areas indicate radiative transport. The
yellow hatched areas correspond to D- and H-burning, and the red hatched
areas indicate the GR instability according to the polytropic criterion of
equation (7) with n = 3. The black curves indicate the Lagrangian layers
of log (Mr/M⊙) = 1, 2, 3, 4 and 5, and the white ones are isotherms of
log(T [K]) = 5, 6, 7 and 8.

total luminosity
H-burning

Figure 3. Evolution of the central temperature (upper panel) and of the
luminosity (lower panel) as a function of the stellar mass, for models with
the indicated accretion rates. In the lower panel, the solid lines indicate the
total luminosity, and the dashed lines the contribution from H-burning only.

Figure 4. Luminosity wave at 0.1 M⊙ yr−1. The three curves show the
internal luminosity profiles at M = 10, 20 and 30 M⊙. The first profile
corresponds to the fully convective initial model. At the second one, the
radiative core has grown to 80 per cent of the total stellar mass, but the stellar
radius is still decreasing (R = 118 R⊙). In the last profile, the luminosity
wave has reached the surface, dLr/dMr > 0 everywhere, and the radius has
increased to 821 R⊙.

Figure 5. Time-scale balance: comparison between the time-scales for ac-
cretion and KH contraction at M = 500 M⊙. The KH time is computed
using the ZAMS radius and luminosity (Schaerer 2002).

zones for Ṁ ≥ 1 M⊙ yr−1 (Fig. 2). Once deuterium is exhausted in
the centre, the D-burning region moves outwards in mass (shell D-
burning), following the isotherms (Fig. 2). The convective core that
formed in the high-Ṁ models survives the D exhaustion, but remains
confined in the same Lagrangian layers that correspond to the initial
seed, and thus contracts with it. Notice that neither this convective
zone nor the plateau in central temperature visible in Fig. 3 (at
30 M⊙ < M < 100 M⊙) is due to D-burning, as one could naively
believe. Test computations without deuterium confirmed that this
feature appears in any case. Actually, our computations show that
D-burning has no significant impact on the stellar structure of the
models described here.

After the luminosity wave has reached the surface, all the layers
of the star lose entropy (dLr/dMr = −Tds/dt > 0). For low enough
accretion rates (Ṁ ∼ 0.001 M⊙ yr−1), the stellar radius decreases
as a consequence, despite the new mass that is continuously ac-
creted, and the star can contract towards the ZAMS. For high Ṁ

however, the entropy losses are not efficient enough to make the
stellar radius decrease. Despite the contraction of all the layers, the
new material that lands on the stellar surface makes the stellar radius
increase monotonically for the rest of the evolution.

In order to illustrate the origins of this difference between the low-
and high-Ṁ regime, we plot in Fig. 5 the time-scales for accretion
and KH contraction. The KH time gives the time-scale for thermal
adjustment in the stellar interior and indicates the time it takes for
the star to contract towards the ZAMS if accretion stops. We use
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Figure 9. Evolutionary tracks of the models for the indicated accretion
rates, for fitM = 0.999 (solid lines) and 0.99 (dashed lines). The grey straight
lines indicate the stellar radius, and the black dotted curve is the ZAMS of
Schaerer (2002).

layers of the star, those above a given value of fitM = Mr/M. In our
models above, we used fitM = 0.999, except for the case Ṁ = 0.001
M⊙ yr−1 where we used fitM = 0.99. Here we study the effect of
changing the value of fitM. To that aim, we present models at Ṁ >

0.001 M⊙ yr−1 with fitM = 0.99 and a model at 0.001 M⊙ yr−1

with fitM = 0.999. Decreasing fitM reduces physical consistency, but
makes numerical convergence easier. For Ṁ < 1 M⊙ yr−1, models
with fitM = 0.99 are started from the 2 M⊙ initial protostellar seed,
instead of the 10 M⊙ one (Section 3.1). For Ṁ = 0.001 M⊙ yr−1,
the model with fitM = 0.999 is started from the 10 M⊙ seed.

The evolutionary tracks are shown in Fig. 9 for accretion rates of
0.1, 0.01 and 0.001 M⊙ yr−1. Due to the use of various initial mod-
els, the early evolution differs between the fitM = 0.999 and 0.99
cases. But at the stage where the models at 0.001 and 0.1 M⊙ yr−1

converge to their respective asymptotic behaviours, their evolution-
ary tracks become nearly independent of fitM. The slight shift in the
tracks at 0.1 M⊙ yr−1 reflects simply the dependence of the exact
location of the Hayashi limit on the treatment of the external layers
of the star, since this limit results from the opacity in the external
layers. The same is true for the 1 M⊙ yr−1 case, not shown here.
In contrast, the asymptotic track in the low-Ṁ regime (model at
0.001 M⊙ yr−1) is not affected by a change in fitM, because the lo-
cation of the ZAMS is fixed by the physics in the centre of the star,
and a change in the treatment of the outer layers has no impact. This
justifies our choice of fitM = 0.99 for the model at 0.001 M⊙ yr−1

described in Section 3.2.
Only for the intermediate case at 0.01 M⊙ yr−1, the asymptotic

behaviour differs significantly between fitM = 0.999 and 0.99. After
several oscillations in Teff, when the model at fitM = 0.999 converges
to the Hayashi limit in the red, with Teff < 104 K, the model at
fitM = 0.99 remains in the blue, close to the low-Ṁ tracks, with
Teff ≃ 70 000 K. Thus, at this intermediate rate, the asymptotic
behaviour is switched from one limit to the other by a change in
fitM. We notice also that before the convergence to the asymptotic

Figure 10. Ionizing flux as a function of the stellar mass for the models
with indicated accretion rates. In each panel, the solid line corresponds to
the model with fitM = 0.999, and the dashed line to the one with fitM = 0.99.
The black dotted line corresponds to the ZAMS of Schaerer (2002).

track, the amplitude of the oscillations in Teff is reduced by the
decrease in fitM.

In order to study how this effect impacts the ionizing flux, we
compute Sion according to equation (3) for the same models. The
result is shown in Fig. 10. As expected from the evolutionary tracks,
for Ṁ ≥ 0.1 and Ṁ = 0.001 M⊙ yr−1, Sion is nearly unaffected by
a change in fitM. Only in the intermediate case 0.01 M⊙ yr−1, Sion

differs between models at fitM = 0.999 and 0.99. The reduction of
the amplitude of the Teff oscillations in the model at fitM = 0.99
makes Sion follow the ZAMS limit closer. But more importantly,
as the model with fitM = 0.999 converges to the high-Ṁ regime,
the corresponding value of Sion decreases suddenly by eight orders
of magnitude, from 1051 to 1043 s−1. At the same stage, the model
with fitM = 0.99 remains in the blue, with Sion growing slowly
(Sion > 1050 s−1). The eight orders of magnitude difference is main-
tained as the stellar mass approaches 104 M⊙.

This example shows that the choice of fitM is critical in order
to determine properly the ionizing properties of stars accreting at
a rate between 0.001 and 0.1 M⊙ yr−1. Difficulties in numerical
convergence make it impossible to use fitM > 0.999. However,
the models described above show that an increase in fitM leads to
larger radii and lower effective temperatures. But the Hayashi limit
prevents Teff to decrease under 5000–6000 K. Since our model at
Ṁ = 0.01 M⊙ yr−1 and fitM = 0.999 reaches the Hayashi limit at
600 M⊙, we do not expect a further increase in fitM to modify the
track in the supermassive range. Actually, regarding the above ex-
amples, one can expect convergence to the high-Ṁ asymptotic track
to occur earlier at higher fitM. Thus, a further increase in fitM could
potentially reduce the value of Ṁcrit closer to 0.001 M⊙ yr−1, and
bring definitely the intermediate 0.01 M⊙ yr−1 rate to the high-Ṁ
range. An accurate treatment of the external layers of the accreting

MNRAS 474, 2757–2773 (2018)
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	pathway	to	supermassive	stars!	
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Umeda et al. (2016, ApJ, 830, L34), 
Woods et al. (2017. ApJ, 842, L6),  
Haemmerlé et al. (2018. MNRAS, 474, 2757)

Figure 7

Maximum mass reachable by supermassive stars accreting at di↵erent rates until the onset of the
GR instability triggers collapse to a black hole of the same mass. The colored symbols depict the
final masses in the studies of Umeda et al. (2016), Woods et al. (2017), and Haemmerlé et al.
(2018) for accretion rates up to Ṁ = 10M� yr�1. We also report results from Haemmerlé et al.
(2019) for 100M� yr�1 and 1000M� yr�1, but note that the calculations terminated before the
GR instability sets in, and so the expected final masses are higher than shown here, as indicated
by the tentative extension of the accretion path (vertical dotted lines). We also indicate the region
forbidden by the GR instability as derived from analytic estimates (see Haemmerlé 2020, 2021a).
The tilted lines show the evolution in M vs. Ṁ space for the free-fall collapse of gas spheres with
di↵erent initial density profiles, characterized by the contrast ⇢/⇢̄ between the density of the
infalling gas and the mean density of the accreting SMS, following the mass-radius relation for
high accretion rates (Equation 23). The figure is inspired by Haemmerlé et al. (2021).

structure calculations indicate that primordial SMS evolve as red supergiant protostars

(Hosokawa et al. 2012a, 2013; Haemmerlé et al. 2018), with extended radii that follow the

relation given by Equation 23 and surface temperatures of only ⇠ 5000K. Their internal

structure consists of a convective core, a radiative zone containing most of the stellar mass,

and a convective envelope that covers a dominant fraction of the photospheric radius. To a

good approximation, these structures can be described as hylotropes (Begelman et al. 2008;

Begelman 2010), in particular for accretion rates & 10M� yr�1. Although very luminous,

their low surface temperatures do not allow them to emit large amounts of ionizing photons.

Consequently, they are not able to create extended HII regions (Section 4.2.1), which might

limit the overall mass growth or a↵ect star formation in neighboring halos (Section 4.3.1).

Dense clusters. As argued in Section 3.2.2, it is di�cult to prevent primordial gas from

fragmenting. This is well established in the standard Pop III formation scenario, but also

appears to hold in highly irradiated atomic cooling halos where H2 is suppressed (e.g.

Agarwal et al. 2012; Sugimura et al. 2014; Agarwal & Khochfar 2015; Latif et al. 2015, 2020;
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image from Klessen, & Glover (2023, ARAA, 61, 65)

– for	accretion	rate	above	0.1	M⦿/yr,		
stars	can	easily	reach	several	105	M⦿ 

before	GR	instability	kicks	in		

– then	they	collapse	directly	into	a	
black	hole	of	the	same	mass	

– while	accreting	the	stars	are	
extremely	puffed	up	and	cold		
(3000	-	4000	K)	

– no	ionizing	radiation:	hard	to	see,	
little	impact

Haemmerlé (2020, A&A 644, A154) 
Haemmerlé (2021a. A&A 647, A83) 
Haemmerlé (2021b. A&A 650, A204)
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we face a dilemma!

image from Klessen, & Glover (2023, ARAA, 61, 65)

to	form	SMS,	we	need	

(1)		a	sufficiently	large	mass	reservoir	( )	

(2)		maintain	 		for	a	sufficiently	long	time	

then	can	reach	masses	above	 	before	the	GR	
instability	kicks	in	an	they	collapse	into	a	BH…	

BUT:		

(3)		gas	under	this	conditions	will	fragment!	

WHAT	IS	THE	WAY	OUT?

Mgas ∼ 106M⊙
·M ≥ 0.1M⊙/yr

105M⊙
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(proto)stellar clusters !!

Begelman & Rees (1978, MNRAS, 185, 847), Rees (1984, ARA&A, 22, 471),  
Regan & Haehnelt (2009, MNRAS, 396, 343), Woods et al. (2019, PASA, 36, e027)

348 J. A. Regan and M. G. Haehnelt

expected to settle into rotational support at radii which are similar
or smaller than those of compact nuclear star clusters depending on
how much angular momentum loss will occur. Note, however, that
the observed clusters may have expanded due to the rapid removal
of gas (Bastian & Goodwin 2006).

4 IM P L I C AT I O N S F O R TH E F O R M AT I O N
O F M ASSIVE SEED BLACK H OLES

4.1 Pathways to a massive black hole

Various mechanisms by which a massive black hole may form have
been laid out comprehensively by Rees (1978, 1984). Since then
considerable effort has gone into researching the paths in this flow
chart but the actual formation process of SMBH nevertheless still
eludes us. Fig. 5 summarizes the paths to a massive black hole
concentrating on the possibilities that pre-galactic DM haloes with
T vir ! 10 000 K offer. We thereby use the results of our numerical
simulations as a starting point. In the now well established hier-
archical paradigm for galaxy formation (White & Rees 1978) DM

haloes with T vir ! 10 000 K build-up through the merging of several
DM haloes with smaller virial temperatures. In these less massive
haloes gas can only collapse and form stars, if the gas cools due
to H2 and/or metals. Especially, for the first generation of these
haloes it is thus very uncertain, how efficiently they have formed
stars (e.g. Greif et al. 2008; Norman 2008; Whalen et al. 2008). As
discussed in Section 3.2, this also introduces considerable uncer-
tainty for the cooling processes and star formation efficiency in the
more massive haloes with T vir ! 10 000 K. If fragmentation and
star formation is efficient early on, an ordinary star cluster/dwarf
galaxy may form. If cooling on the other hand is dominated by
atomic cooling the gas is expected instead to settle into a rotation-
ally supported, fat, self-gravitating disc (Mo, Mao & White 1998;
Oh & Haiman 2002). The further fate of this disc depends crucially
on whether atomic cooling remains the dominant cooling process
during the further evolution of the disc. If this is the case the gas will
not efficiently fragment and will continue to contract on a time-scale
controlled by the rate at which the gas loses angular momentum. As
the gas will be gravitationally unstable this is expected to occur on
a time-scale which is longer by a factor of a few than the dynam-
ical time-scale. The further fate then depends on how efficiently

Figure 5. Summary of the possible pathways to massive black holes via a stellar seed black hole, a quasi star or via a nuclear star cluster in DM haloes with
T vir ! 10 000 K .1

C⃝ 2009 The Authors. Journal compilation C⃝ 2009 RAS, MNRAS 396, 343–353
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discussed different processes whereby continuing contraction may lead to expulsion of 
matter, or the conversion of stellar material into some compact form. 

General discussions have been given by Peebles (1972) and Saslaw (1973). The first 
discussion of stellar collisions (coalescence and disruption) was given by Gold, Axford & 
Ray (1965), but the most detailed attempt to construct evolutionary sequences has been 
made by Spitzer and his collaborators (see especially Spitzer & Saslaw 1966; Spitzer & Stone 
1967; Spitzer 1971). These authors suppose that the cluster is originally composed of main 
sequence stars, and make the reasonable assumption that any gas liberated by collisions 
quickly cools and condenses into new stars of the same kind. They find that stellar collisions 
eventually become very efficient at dissipating cluster energy, but that the small amount of 
angular momentum initially present plays a critical role in determining the final state: 
according to Spitzer and collaborators, the evolution leads to a cold tightly-bound disc of 
stars whose relative velocities are insufficient to cause further disruptive collisions. 

We review this work in Section 2. In Section 3, we suggest that the evolution woulc 
actually continue in a more dramatic fashion than envisaged by Spitzer: the dense self 
gravitating disc of stars would be unstable to the Ostriker & Peebles (1973) global instability 
which would regenerate high random velocities and permit stellar collisions and destructior 
to proceed at an ever-accelerating pace. Eventually the luminosity generated by the collision* 
provides so much radiation pressure that the debris cannot recondense into new stars: ai 
this stage the material merges into an amorphous supermassive cloud. 

It is far from certain how a supermassive star ends its life. It will eventually collapse oi 
undergo a nuclear explosion. The fraction of its rest-mass energy that can be released is les* 
than ~ 0.01 unless magnetic fields or differential rotation can stave off the post-Newt onhr 
instability. Although its luminosity may be very high, the bright phase is brief compared tc 
the earlier evolutionary time-scale of the cluster. On the other hand, a cluster whose con 
stituent stars can transform themselves into neutron stars or black holes could subsequent!) 
evolve on the (slower) dynamical time-scale, but would yield substantially lower luminosity 

It appears, then, that the hypothesis that material is continually reprocessed into nev 
stars for as long as possible is the one which postpones collapse longest, and yields the 

Figure I 
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Figure 1. Original diagram from Rees (1978, 1984), outlining the possible formation
pathways for supermassive black holes. In this review, as in the conference, our focus
is on the left side of the diagram.

supermassive stars (SMSs) (Hoyle & Fowler 1963; Iben 1963),
dense stellar clusters (e.g., Begelman & Rees 1978), and a host of
other objects were laid out as possible intermediaries. Many of
these hypothesised progenitor objects were initially suggested to
actually be the sources powering the emission seen in active galac-
tic nuclei, before mounting observational evidence made it clear
that these were in fact accreting SMBHs (Rees 1984). Common to
all of the SMBH progenitor channels in Figure 1 is the concentra-
tion of a large quantity of gas in a sufficiently small volume, leading
to runaway black hole growth. How often each channel may be
realised in nature, however, remains an outstanding problem. The
majority of these scenarios remain plausible but unproven today.

By far the greatest challenge to any theory of SMBH formation
has been the discovery of luminous (>∼1013 L⊙) quasars at z ∼ 7,
when the Universe was only ∼800Myr old (e.g., Mortlock et al.
2011; Wu et al. 2015; Bañados et al. 2018). The masses of these
objects are all>∼109 M⊙, inferred from the breadth of the observed
Mg II 2 798 Å line (e.g., McLure & Dunlop 2004), and consistent
with their luminosities being near the Eddington limit. Among the
most troubling examples, SDSS J010013.02+280225.8 is a known
redshift∼6.3 quasar that is already 1.2× 1010M⊙ (Wu et al. 2015),
while even earlier in the Universe, ULAS J134208.10+092838.61
is a 0.8× 109 M⊙ quasar at z = 7.54. How did these black holes
reach of order 1–10 billion solar masses in the first billion years of
the Universe?

The problem is best illustrated if we consider the optimistic
case of persistently Eddington-limited accretion for the entire

prior lifetimes of these objects. A black hole may only grow in this
way from an initial ‘seed’ massM0 to a given massMBH in a time:

tgrowth ≈ 0.45 ϵ

1− ϵ
ln

(MBH

M0

)
Gyr, (1)

where ϵ ∼ 0.1 is the typical radiative efficiency for thin-disk accre-
tion (see, e.g., Shakura & Sunyaev 1973, for discussion). Even in
this most favourable scenario, producing a >109 M⊙ quasar from
a typical∼10–100M⊙ Pop III remnant would require an accretion
time greater than the age of the Universe at z ∼ 7, unless signif-
icantly lower radiative efficiencies may be invoked (i.e., strongly
‘super-Eddington,’ accretion, see, e.g., Natarajan 2014; Inayoshi
et al. 2016, for further discussion). Even so, numerical simulations
suggest that most of such stellar-mass Pop III black holes were
likely to have been ‘born starving’, and unable to grow substan-
tially via accretion early in the Universe, particularly due to their
strong ionising feedback and possible ejection from their halos
via dynamical 3-body interactions (e.g., Johnson & Bromm 2007;
Whalen & Fryer 2012; Smith et al. 2018).

These simple considerations provide a strong hint that very
rapid accretion rates and a massive ‘seed’ are necessary ingredi-
ents in the origin of the most massive high-z quasars, although
relatively lower-mass progenitors may yet be plausible for these
objects (see, e.g., Natarajan & Volonteri 2012; Pezzulli et al. 2017,
and references therein), and can reproduce the observedM-σ rela-
tion in the local Universe (see, e.g., Taylor & Kobayashi 2014,
2015). The relative abundance of light andmassive seeds, and their
role in the origin of all SMBHs, depends sensitively on the preva-
lence of halos where the formation of massive black hole seeds
is possible (e.g., Lodato & Natarajan 2007; Agarwal et al. 2012;
Dijkstra, Ferrara, & Mesinger 2014; Habouzit et al. 2016a).

The first question then becomes what massive seed formation
channels are viable. The collapse of dense stellar clusters to form a
massive protostar has been considered for decades (e.g., Begelman
& Rees 1978). The necessary inefficiency of this process, however,
in which much of the original energy and angular momentum
of the system are shed with stellar mass ejected in 3-body inter-
actions, strongly limits its ability to produce extremely massive
seeds (see, e.g., Latif, Schleicher, & Hartwig 2016a, and references
therein). More exotic channels, such as the growth of primor-
dial black holes (Zel’dovich & Novikov 1967), or intermediate-
mass black holes (IMBH) formed from dissipative dark matter
(D’Amico et al. 2018), remain somewhat speculative and require
further study. A promising model for producing both large seed
masses and rapid accretion rates has emerged in the atomically
cooled halo scenario (e.g., Dijkstra et al. 2008), in which expo-
sure to a strong Lyman–Werner flux from an adjacent Pop III halo
destroys the molecular hydrogen in a primordial halo which has
not yet undergone fragmentation (Regan et al. 2017). This pre-
vents ‘normal’ Pop III star formation and allows infall rates of
up to ∼0.1–1.0M⊙/yr. Numerical simulations have consistently
shown such high accretion rates leading to the formation of a
nuclear-burning, SMS, which will later undergo collapse through
a relativistic instability (referred to in the literature as a ‘direct
collapse black hole’, DCBH), leaving a massive black hole rem-
nant (Hosokawa et al. 2013; Umeda et al. 2016; Woods et al. 2017;
Haemmerlé et al. 2018a).

High baryonic streaming velocities relative to dark matter
within some regions in the early Universe may provide another
means to suppress star formation in lowmass halos (Tseliakhovich
&Hirata 2010a) and promote the growth of a DCBH seed (Tanaka
& Li 2014a; Hirano et al. 2017), although such a mechanism may
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Figure 1. Original diagram from Rees (1978, 1984), outlining the possible formation
pathways for supermassive black holes. In this review, as in the conference, our focus
is on the left side of the diagram.

supermassive stars (SMSs) (Hoyle & Fowler 1963; Iben 1963),
dense stellar clusters (e.g., Begelman & Rees 1978), and a host of
other objects were laid out as possible intermediaries. Many of
these hypothesised progenitor objects were initially suggested to
actually be the sources powering the emission seen in active galac-
tic nuclei, before mounting observational evidence made it clear
that these were in fact accreting SMBHs (Rees 1984). Common to
all of the SMBH progenitor channels in Figure 1 is the concentra-
tion of a large quantity of gas in a sufficiently small volume, leading
to runaway black hole growth. How often each channel may be
realised in nature, however, remains an outstanding problem. The
majority of these scenarios remain plausible but unproven today.

By far the greatest challenge to any theory of SMBH formation
has been the discovery of luminous (>∼1013 L⊙) quasars at z ∼ 7,
when the Universe was only ∼800Myr old (e.g., Mortlock et al.
2011; Wu et al. 2015; Bañados et al. 2018). The masses of these
objects are all>∼109 M⊙, inferred from the breadth of the observed
Mg II 2 798 Å line (e.g., McLure & Dunlop 2004), and consistent
with their luminosities being near the Eddington limit. Among the
most troubling examples, SDSS J010013.02+280225.8 is a known
redshift∼6.3 quasar that is already 1.2× 1010M⊙ (Wu et al. 2015),
while even earlier in the Universe, ULAS J134208.10+092838.61
is a 0.8× 109 M⊙ quasar at z = 7.54. How did these black holes
reach of order 1–10 billion solar masses in the first billion years of
the Universe?

The problem is best illustrated if we consider the optimistic
case of persistently Eddington-limited accretion for the entire

prior lifetimes of these objects. A black hole may only grow in this
way from an initial ‘seed’ massM0 to a given massMBH in a time:

tgrowth ≈ 0.45 ϵ

1− ϵ
ln

(MBH

M0

)
Gyr, (1)

where ϵ ∼ 0.1 is the typical radiative efficiency for thin-disk accre-
tion (see, e.g., Shakura & Sunyaev 1973, for discussion). Even in
this most favourable scenario, producing a >109 M⊙ quasar from
a typical∼10–100M⊙ Pop III remnant would require an accretion
time greater than the age of the Universe at z ∼ 7, unless signif-
icantly lower radiative efficiencies may be invoked (i.e., strongly
‘super-Eddington,’ accretion, see, e.g., Natarajan 2014; Inayoshi
et al. 2016, for further discussion). Even so, numerical simulations
suggest that most of such stellar-mass Pop III black holes were
likely to have been ‘born starving’, and unable to grow substan-
tially via accretion early in the Universe, particularly due to their
strong ionising feedback and possible ejection from their halos
via dynamical 3-body interactions (e.g., Johnson & Bromm 2007;
Whalen & Fryer 2012; Smith et al. 2018).

These simple considerations provide a strong hint that very
rapid accretion rates and a massive ‘seed’ are necessary ingredi-
ents in the origin of the most massive high-z quasars, although
relatively lower-mass progenitors may yet be plausible for these
objects (see, e.g., Natarajan & Volonteri 2012; Pezzulli et al. 2017,
and references therein), and can reproduce the observedM-σ rela-
tion in the local Universe (see, e.g., Taylor & Kobayashi 2014,
2015). The relative abundance of light andmassive seeds, and their
role in the origin of all SMBHs, depends sensitively on the preva-
lence of halos where the formation of massive black hole seeds
is possible (e.g., Lodato & Natarajan 2007; Agarwal et al. 2012;
Dijkstra, Ferrara, & Mesinger 2014; Habouzit et al. 2016a).

The first question then becomes what massive seed formation
channels are viable. The collapse of dense stellar clusters to form a
massive protostar has been considered for decades (e.g., Begelman
& Rees 1978). The necessary inefficiency of this process, however,
in which much of the original energy and angular momentum
of the system are shed with stellar mass ejected in 3-body inter-
actions, strongly limits its ability to produce extremely massive
seeds (see, e.g., Latif, Schleicher, & Hartwig 2016a, and references
therein). More exotic channels, such as the growth of primor-
dial black holes (Zel’dovich & Novikov 1967), or intermediate-
mass black holes (IMBH) formed from dissipative dark matter
(D’Amico et al. 2018), remain somewhat speculative and require
further study. A promising model for producing both large seed
masses and rapid accretion rates has emerged in the atomically
cooled halo scenario (e.g., Dijkstra et al. 2008), in which expo-
sure to a strong Lyman–Werner flux from an adjacent Pop III halo
destroys the molecular hydrogen in a primordial halo which has
not yet undergone fragmentation (Regan et al. 2017). This pre-
vents ‘normal’ Pop III star formation and allows infall rates of
up to ∼0.1–1.0M⊙/yr. Numerical simulations have consistently
shown such high accretion rates leading to the formation of a
nuclear-burning, SMS, which will later undergo collapse through
a relativistic instability (referred to in the literature as a ‘direct
collapse black hole’, DCBH), leaving a massive black hole rem-
nant (Hosokawa et al. 2013; Umeda et al. 2016; Woods et al. 2017;
Haemmerlé et al. 2018a).

High baryonic streaming velocities relative to dark matter
within some regions in the early Universe may provide another
means to suppress star formation in lowmass halos (Tseliakhovich
&Hirata 2010a) and promote the growth of a DCBH seed (Tanaka
& Li 2014a; Hirano et al. 2017), although such a mechanism may
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Figure 1. A sketch of the expected evolution of the stellar cluster and its 
central massive object. (a–b) The most massive star falls to the centre as a 
result of dynamical friction. (c) The most massive star in the centre accretes 
material through stellar collisions and from the gas. (d) The supermassive 
star collapses into a very massive black hole. 
outcomes in terms of mass. The upper limits for the masses of 
supermassive stars are considered to be in the range 10 5 − 10 6 M ⊙
(Woods et al. 2017 ; Haemmerl ́e et al. 2018 , 2019 ), providing an 
indication about the maximum seed masses that could be formed. In 
a small mass window, Chen et al. ( 2014 ) found that Pop. III stars with 
∼55 000 M ⊙ can cause thermonuclear explosions releasing energies 
of up to 10 55 erg. This question regarding was recently reinvestigated 
by Nagele et al. ( 2020 ), who did not find an explosion in the non- 
rotating case, though they found it when they included slow rotation. 
Such occasional bursts may thus occur, but are likely not the generic 
outcome. 

The case of rotating supermassive stars was investigated by 
Uchida et al. ( 2017 ), finding that an additional torus can be formed 
surrounding the rotating black hole that forms as the outcome 
of collapse. Such studies were recently extended to incorporate 
the effect of magnetic fields, showing how collapse may lead to 
the launching of jets consistent with the typical durations of long 
gamma-ray bursts (Butler et al. 2018 ; Sun, Ruiz & Shapiro 2018 ). 
Observationally, this could be a possibly interesting implication, 
as it links this formation scenario to already known phenom- 
ena. Once a massive black hole is formed, it may continue to 
grow via tidal disruption events (TDEs) disrupting the surrounding 
stars (Sakurai, Yoshida & Fujii 2019 ). Such events may give 
rise to additional possibilities to detect the newly formed black 
holes. 

4  DIS CUSSION  A N D  C O N C L U S I O N S  
We have considered here the evolution of a compact and massive 
cloud consisting of gas and stars at very low metallicity. Our results 
strongly suggest that the interaction between the gas and the stars 
can lead to the formation of very massive central objects. In case 
that radiative feedback is not too relevant, as it could be the case 
for the Salpeter IMF, we find masses of the central object of at least 
10 4 M ⊙, which are lower limits as the cluster is exposed to continuous 
infall and contraction, which should further enhance the accretion 
and collapse. If the accretion time-scale is limited by feedback, we 
found final masses of about 10 3 M ⊙, which are then largely due to 
stellar collisions with gas accretion playing only a minor role. The 
rele v ance and ef ficiency of feedback needs to be further explored 
in these environments; estimates of the Str ̈omgren radius show that 
the radiation could be trapped and might thus not be too prohibitive 
for the growth of the massiv e object. Be yond that, the masses in 
general are likely to depend on the environment, with higher mass 
in the presence of larger infall rates, or more massive and compact 
clusters (see also Tagawa et al. 2020 ). Due to the low metallicity, the 
feedback from winds is not expected to be rele v ant, as suggested, e.g. 
by Das et al. ( 2021b ). We conclude that the o v erall conditions within 
the cloud are expected to allow very ef ficient gro wth of the central 
massive object, both due to collisions in the dense cluster, but also 
through accretion in the gas. We particularly note that the presence 
of supersonic turbulence as well as the random walk of the central 
massive object within the cluster will highly alleviate the role of 
angular momentum, as also noted by Alexander & Natarajan ( 2014 ). 
The conditions here in the cloud further allow for the possibility 
of hyper-Eddington accretion, matching the condition derived by 
Inayoshi et al. ( 2016 ). 

Considering the masses estimated here and the expected depen- 
dence on the environment, we expect the formation of massive 
black holes with at least 10 3 –10 4 M ⊙, though possibly even reach- 
ing masses of 10 5 –10 6 M ⊙, depending on the environment and 
considering the upper limits derived by Woods et al. (e.g. 2017 ). 
Occasionally if such stars have masses close to 55 000 M ⊙, highly 
energetic explosions may also occur (Chen et al. 2014 ; Nagele et al. 
2020 ), though we do not expect this as a very generic outcome. 
Producing massive black holes seeds was found to be important 
to explain the observed supermassive black holes at high redshift 
(Shapiro 2005 ; Valiante et al. 2016 ; Sassano et al. 2021 ), and the 
formation mechanism outlined here may thus help us to alleviate this 
problem. 

To e v aluate the impact of such initial masses, it will be particularly 
valuable to observationally study the low end of the black hole 
mass function at cosmic dawn (Trinca et al. 2022 ). The proposed 
formation scenario leads us to several natural predictions that can 
be verified with future observations. A very natural prediction is 
that early black holes should be surrounded by a young star cluster, 
potentially even still embedded in gas, in case that feedback was 
inefficient. At the early stages and in very massiv e clouds, ev en 
strong obscuration could occur in these environments, potentially 
requiring sub-mm investigations with ALMA 2 or hard X-ray studies 
with the future Athena X-ray Observatory 3 to verify the presence 
of the supermassive black hole. These will affect the mass function 
of supermassive black holes, as calculated by Sassano et al. ( 2021 ), 
where the low-mass range is particularly rele v ant. The formation 
2 ALMA: ht tps://www.almaobservat or y.or g/ en/home/ 
3 Athena: ht tps://www.the-at hena-x-r ay-obser vatory.eu/
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how to form seeds of  
supermassive BHs?

clusters	that	form	in	massive	and	very	dense	gas	clouds	have	

(1)		a	sufficiently	large	mass	reservoir	( )	

(2)		individual	stars	have	high	accretion	rates	and	evolve	
							along	large-R	tracks	

result	is		

(3)		combination	of	high	stellar	density	and	large	stellar	radii	
							results	in	large	collision	rates	

(4)		together	this	results	in	run-away	mass	growth	of		
							1	or	2	objects	to	build	SMS

Mgas ∼ 106M⊙

Reinoso et al. (2018, A&A, 614, A14), Boekhold et al. (2018, MNRAS, 476, 366), Alister Seguel et al. (2020, MNRAS, 
493, 2352), Reinoso et al. (2020, A&A, 639, A92), Vergara et al. (2021, A&A, 649, A160), Schleicher et al. (2022, 
MNRAS, 512, 6192), Reinoso et al. (2023, MNRAS, 521, 3553), Schleicher et al. (2023, MNRAS, 521, 3972)
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493, 2352), Reinoso et al. (2020, A&A, 639, A92), Vergara et al. (2021, A&A, 649, A160), Schleicher et al. (2022, 
MNRAS, 512, 6192), Reinoso et al. (2023, MNRAS, 521, 3553), Schleicher et al. (2023, MNRAS, 521, 3972)
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80 % of the initial mass

3x10⁴ MSun cloud

37 % of the initial mass

10⁴ MSun cloud



ga
la

ct
ic 

ce
nt

er
ru

n-
aw

ay
 c

ol
lis

io
ns

Reinoso et al. (2018, A&A, 614, A14), Boekhold et al. (2018, MNRAS, 476, 366), Alister Seguel et al. (2020, MNRAS, 
493, 2352), Reinoso et al. (2020, A&A, 639, A92), Vergara et al. (2021, A&A, 649, A160), Schleicher et al. (2022, 
MNRAS, 512, 6192), Reinoso et al. (2023, MNRAS, 521, 3553), Schleicher et al. (2023, MNRAS, 521, 3972)

Supermassive stars in the first star clusters 3559 

MNRAS 521, 3553–3569 (2023) 

Figure 3. Evolution of the mass M , accretion rate Ṁ , and radius R for the 
MMO and second MMO in one of our simulations (M1 t100 2), along with 
the number of collisions N col as functions of time. 

Figure 4. Radius of the MMO, collision rate along with the number of 
protostars, and mass accretion rate due to collisions as functions of time for 
one of our simulations (M1 t100 1). 

Figure 5. Mass distribution of the particles that merge with the MMO for 
simulation M1 t100 1–6. 

Figure 6. Average mass fraction gained through collisions and accretion, and 
average masses for the MMO and second MMO for simulations M1 t100 1–6. 

Figure 7. Combined mass distribution for stars bound to the cluster at the 
end of simulations M1 t100 1–6. 
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Figure 8. Combined mass distribution of ejected stars at the end of 
simulations M1 t100 1–6. 

Figure 9. Same as Fig. 2 but for a cluster with M gas = 3 × 10 4 M ⊙. 
ϵ = 0.80 ± 0.07 means that this single object gathers on average 
80 ± 7 per cent of the total mass of the cloud. 
3.2.2 Emergence of very massive objects 
In all our simulations with M gas = 3 × 10 4 M ⊙, we see the formation 
of a single object that contains on average 80 ± 7 per cent of the 
initial cluster mass at 200 kyr. This means that the average mass 
of the MMO is 23 873 ± 2001 M ⊙. We present in Fig. 10 some of 
the properties of the MMO, like the mass, accretion rate, radius, 
and number of collisions it experiences during the evolution of the 
system. This particle also evolves as a supermassive star due to the 
high accretion rates that it reaches, and grows both by accretion of 
gas and stellar collisions. The mass growth by mergers with other 
protostars contributes on average 46 per cent of its final mass as 
shown in Fig. 11 . Unlike the less massive clusters, here higher 
accretion rates are reached, and they last for longer. We also see 
that stellar collisions contribute with a smaller mass fraction to the 
final mass of the MMO. This is simply due to the fact that in the 

Figure 10. Same as Fig. 3 but for a cluster with M gas = 3 × 10 4 M ⊙. 

Figure 11. Average mass fractions gained through collisions and accretion, 
and average final masses for the MMO and the second MMO for simulations 
M3 t100 1–6. 
simulations with M gas = 3 × 10 4 M ⊙, the MMO gains much more 
mass by gas accretion. 

Gas accretion peaks on average at 10 M ⊙ yr −1 and remains abo v e 
the critical accretion rate during the initial 8000 yr after the initial 
cloud contraction. This is sufficient to cause the protostar to evolve as 
an inflated object that quickly reaches a radius of more than 100 au, 
which in turn causes many stellar collisions to occur. We see in 
Fig. 12, the collision rate peaks just after the MMO inflates in radius, 
reaching a peak of more than 0.3 collisions per year, a factor 3 higher 
than the lower mass cloud simulations. The mass accretion due to 
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Figure 12. Same as Fig. 4 but for a cluster with M gas = 3 × 10 4 M ⊙. 

Figure 13. Mass distribution of the particles that merge with the MMO for 
simulation M3 t100 1. 
collisions reaches peaks of ∼10 M ⊙ yr −1 , a factor 10 higher than for 
the less massive cloud simulations. The collision rate then decreases 
with the number of protostars. 

Additionally, the huge gas densities ( ρ ∼ 10 −8 g cm −3 ) found 
around the MMO trigger, the formation of sink particles, 1950 
new sink particles on average. Nearly all of these sink parti- 
cles ( ∼99 ± 0.2 per cent) merge with other objects, notably, 
70 ± 5 per cent of the sinks merge with the MMO, and most of 
them do so shortly after they are created when the y hav e accreted 
only 1–2 M ⊙. Sink particles in this mass range that merge with the 
MMO represent 52 ± 9 per cent of the total number of mergers, but 
they contribute on average only 11 ± 4 per cent of the total mass 
gained through mergers. We show the mass distribution of the sink 
particles that merge with the MMO in Fig. 13 . 

Figure 14. Combined mass distribution for stars bound to the cluster at the 
end of simulations M3 t100 1–6. 

Figure 15. Combined mass distribution for stars ejected from the cluster at 
the end of simulations M3 t100 1–6. 
3.2.3 Final cluster properties 
At the end of our simulations, the remaining stellar systems consist 
of, on average, only 14 ± 10 particles with an average of 38 ± 12 
ejected ones. Little to no gas is left, and the final cluster is essentially 
comprised of an MMO with ∼2 × 10 4 M ⊙ that is orbited by a few 
other stars, most of them with masses in the range 1–10 M ⊙. In 
three simulations, the second most massive object reaches more than 
1000 M ⊙ and is orbiting the MMO in a close Keplerian orbit, but 
since the mass ratio q = M 1 / M 2 is too high ( > 20), we do not mark 
them as binary systems. 

We show the combined mass distribution of the particles that 
remain bound to the MMO for simulations M3 t100 1–6 in Fig. 14 . 
Comparing this mass distribution to the mass distribution of less 
massi ve clusters sho wn in Fig. 7 , the immediate difference that we 
note is that now we do not have a prominent peak. Instead the mass 
distribution looks flat in the mass range 1–100 M ⊙. 

We also show the combined mass distribution of ejected particles 
for these simulations in Fig. 15 . This looks more similar to the one 
for less massive clusters, but with an additional peak at ∼0.1 M ⊙. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/521/3/3553/7081348 by guest on 11 January 2024

Supermassive stars in the first star clusters 3561 

MNRAS 521, 3553–3569 (2023) 

Figure 12. Same as Fig. 4 but for a cluster with M gas = 3 × 10 4 M ⊙. 

Figure 13. Mass distribution of the particles that merge with the MMO for 
simulation M3 t100 1. 
collisions reaches peaks of ∼10 M ⊙ yr −1 , a factor 10 higher than for 
the less massive cloud simulations. The collision rate then decreases 
with the number of protostars. 

Additionally, the huge gas densities ( ρ ∼ 10 −8 g cm −3 ) found 
around the MMO trigger, the formation of sink particles, 1950 
new sink particles on average. Nearly all of these sink parti- 
cles ( ∼99 ± 0.2 per cent) merge with other objects, notably, 
70 ± 5 per cent of the sinks merge with the MMO, and most of 
them do so shortly after they are created when the y hav e accreted 
only 1–2 M ⊙. Sink particles in this mass range that merge with the 
MMO represent 52 ± 9 per cent of the total number of mergers, but 
they contribute on average only 11 ± 4 per cent of the total mass 
gained through mergers. We show the mass distribution of the sink 
particles that merge with the MMO in Fig. 13 . 

Figure 14. Combined mass distribution for stars bound to the cluster at the 
end of simulations M3 t100 1–6. 

Figure 15. Combined mass distribution for stars ejected from the cluster at 
the end of simulations M3 t100 1–6. 
3.2.3 Final cluster properties 
At the end of our simulations, the remaining stellar systems consist 
of, on average, only 14 ± 10 particles with an average of 38 ± 12 
ejected ones. Little to no gas is left, and the final cluster is essentially 
comprised of an MMO with ∼2 × 10 4 M ⊙ that is orbited by a few 
other stars, most of them with masses in the range 1–10 M ⊙. In 
three simulations, the second most massive object reaches more than 
1000 M ⊙ and is orbiting the MMO in a close Keplerian orbit, but 
since the mass ratio q = M 1 / M 2 is too high ( > 20), we do not mark 
them as binary systems. 

We show the combined mass distribution of the particles that 
remain bound to the MMO for simulations M3 t100 1–6 in Fig. 14 . 
Comparing this mass distribution to the mass distribution of less 
massi ve clusters sho wn in Fig. 7 , the immediate difference that we 
note is that now we do not have a prominent peak. Instead the mass 
distribution looks flat in the mass range 1–100 M ⊙. 

We also show the combined mass distribution of ejected particles 
for these simulations in Fig. 15 . This looks more similar to the one 
for less massive clusters, but with an additional peak at ∼0.1 M ⊙. 
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Table 1. Summary of simulation outcomes. We present for each simulation the initial gas mass, the final time, the quiescent time adopted for contraction 
to the main sequence for supermassive stars, the simulation outcome, the total accreted mass, the final stellar mass bound to the most massive object, the 
mass of the most massi ve object, the ef ficiency of massive object formation, the total mass in ejected stars, the number of stars bound to the MMO, the 
number of ejections and the number of collisions. 
Simulation M gas t end t KH, surf outcome M accreted M stellar, bound M MMO ϵ M ejected N stars N ejections N col 

[M ⊙] [yr] [ t KH ] [M ⊙] [M ⊙] [M ⊙] [M ⊙] 
M1 t100 1 10 4 200 015 100 single 5414 5305 5197 0.52 109 56 70 256 
M1 t100 2 10 4 200 005 100 single 3815 3482 3311 0.33 333 62 112 288 
M1 t100 3 10 4 200 043 100 single 4709 4539 3893 0.39 170 56 77 341 
M1 t100 4 10 4 200 023 100 single 3730 3315 3048 0.30 415 48 153 291 
M1 t100 5 10 4 200 017 100 binary 5854 4821 4096 0.41 1033 6 141 369 
M1 t100 6 10 4 200 050 100 binary 4150 3326 2831 0.28 824 15 196 300 
M1 t10 1 10 4 200 024 10 single 5397 4952 4326 0.43 445 66 83 343 
M1 t10 2 10 4 120 045 10 single 4548 4377 4156 0.42 171 88 79 375 
M1 t10 3 10 4 200 022 10 binary 6057 5297 4064 0.41 760 65 147 364 
M1 t10 4 10 4 200 029 10 binary 5262 4468 2901 0.29 794 86 141 456 
M1 t10 5 10 4 200 036 10 single 6804 6256 4858 0.49 548 89 53 412 
M1 t10 6 10 4 112 701 10 single 4617 4255 4135 0.41 362 56 119 301 
M3 t100 1 3 × 10 4 200 021 100 single 26 108 25 808 24 418 0.81 300 13 42 1892 
M3 t100 2 3 × 10 4 200 043 100 single 26 939 26 898 26 890 0.90 41 10 19 1842 
M3 t100 3 3 × 10 4 200 009 100 single 26 388 26 211 24 577 0.82 177 11 34 2547 
M3 t100 4 3 × 10 4 200 038 100 single 23 312 22 850 20 365 0.68 462 36 53 1844 
M3 t100 5 3 × 10 4 200 034 100 single 23 070 22 973 22 618 0.75 97 12 50 2215 
M3 t100 6 3 × 10 4 200 035 100 single 26 966 26 851 24 375 0.81 115 3 29 2522 
M3 t10 1 3 × 10 4 200 008 10 single 20 981 20 831 20 435 0.68 150 13 70 2283 
M3 t10 2 3 × 10 4 200 026 10 single 23 451 23 063 20 776 0.69 388 32 61 1807 
M3 t10 3 3 × 10 4 200 048 10 single 25 871 25 413 22 267 0.74 458 6 50 2354 
M3 t10 4 3 × 10 4 200 014 10 single 22 585 21 889 21 733 0.72 696 10 89 2445 
M3 t10 5 3 × 10 4 200 039 10 single 20 778 20 481 20 368 0.68 297 6 96 2297 
M3 t10 6 3 × 10 4 200 011 10 single 27 051 26 846 26 746 0.89 205 7 42 3514 

Table 2. Properties of binary systems. We present the mass of the most and 
less massive object M 1 and M 2 , respectively, the semimajor axis a and the 
eccentricity e . 
Simulation M 1 M 2 a e 

[M ⊙] [M ⊙] [au] 
M1 t100 5 4096 688 355 0.126 
M1 t100 6 2831 464 240 0.375 
M1 t10 3 4064 831 472 0.394 
M1 t10 4 2901 1224 120 0.077 
on average. Almost all (95.4 ± 1.7 per cent) of these new sinks merge 
with other objects, but only 34 ± 7 per cent of them merge with the 
MMO. We show the mass distribution of the particles that merge 
with the MMO in Fig. 5 . 

Despite the accretion rate falling below the critical accretion rate 
Ṁ crit , the frequent stellar collisions prevent the contraction of the 
MMO. We note that the mass contributed by collisions to this object 
is around 60 per cent of its final mass as shown in Fig. 6 . 
3.1.3 Final cluster properties 
The typical outcome of our simulations is a small cluster of stars 
with almost no gas left. This final stellar cluster in most simulations 
is made up of ∼50 stars with typical masses in the range 1–10 M ⊙
surrounding the MMO. No more significant gas accretion is taking 
place at 200 kyr, and we would expect radiative feedback from 
the stars to ef ficiently e v aporate the remaining gas. The final mass 
functions are similar in shape as well as the number of remaining 
and ejected stars, although a few clusters contain a binary system and 

fewer stars remain bound due to the increased number of collisions 
and three body interactions ef fecti vely ejecting lower mass objects. 

We present the combined mass distribution at the end of simula- 
tions M1 t100 1–6 in Fig. 7 , and the combined mass distribution of 
ejected particles in Fig. 8 . Individual mass distributions of bound and 
ejected particles for each simulation are presented in Figs D1 and 
D2 . 
3.2 Clusters with M gas = 3 × 10 4 M ⊙
In this section, we describe the general evolution of the clusters with 
3 × 10 4 M ⊙ in gas, and mention the differences with the less massive 
clusters. 
3.2.1 Cluster evolution 
The initial behaviour of the gas cloud is the same for all the 
simulations, and also very similar to the behaviour in the less massive 
clusters. We see that most of the gas is accreted early on in the cloud 
evolution as depicted in Fig. 9 . During the initial evolution, the inner 
parts of the cloud experience an o v erall contraction. Specifically, we 
see a contraction of the 25 per cent Lagrangian radius, which leads 
to a rapid inflow of gas to the central parts of the cluster in a free-fall 
time, i.e. ∼3000 yr. Unlike in the less massive clusters, we also see 
a contraction at the 50 per cent Lagrangian radius. 

Turbulence seems to have a negligible role here, as no substructure 
appears during the initial contraction and a spherical collapse 
proceeds. During the rapid mass inflow, either a central object starts 
to accrete most of the mass, or a new sink particle is created at the 
centre due to the high gas densities. This central particle reaches 
accretion rates of several 10 M ⊙ yr −1 , and the average efficiency 
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observational constraints

● directly observing Pop III stars at high redshift is highly challenging 
—  maybe SNe with JWST, but where to point 
—  this may help to constrain the high-mass end of Pop III IMF 

● more promising: Galactic archeology 
—  maybe we find genuine low-mass Pop III stars  
     (0.8 Msun should have survived until present day) 
—  use detailed abundance pattern in EMP stars to  
      high-mass end constrain high-mass end of IMF  
      (no evidence of PISNe) 

● very exciting: gravitational wave events 
—  binary properties and high-mass end of Pop III IMF 

● other testable expectation: 
—  larger stellar density in clusters of lower metallicity,  
      consequently: larger numbers of close binaries (and higher-order multiples) 

(for further discussions, see Klessen, & Glover (2023, ARAA, 61, 65 -- arXiv.2303.12500)
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IMF of Pop III stars is not well understood  
most likely log-flat and thus top heavy

transition to Pop II star formation at metallicities 
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